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Whence the Mathematical Universe?  

 

Abstract: Tegmark has recently defended his so-called Mathematical Universe 

Hypothesis (MUH) and has maintained that ultimately “our successful [scientific] 

theories are not mathematics approximating physics, but mathematics approximating 

mathematics.”1  If true, the MUH recommends nothing short of a (meta-)physical 

revolution.  However, this proposed Theory of Everything (TOE) has met with a strongly 

divided mixture of praise and condemnation in both philosophical and scientific circles.   

 

If the reader will indulge me, I will in the first half of this essay attempt to explore 

Tegmark’s basic assumptions, connecting these ideas to current trends in the philosophy 

of science, mathematics and metaphysics in order to investigate this novel and innovative 

theory.  Having then uncovered Tegmark’s underlying commitments, the validity of the 

MUH can be accurately assessed.  

 

In the second section of this paper I will offer a defense of a more limited metaphysical 

view motivated by Tegmark’s MUH. 
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1. The Mathematical Universe Hypothesis 

 

Tegmark has recently advanced the MUH as a proposed TOE asserting that “our 

successful [scientific] theories are not mathematics approximating physics, but 

mathematics approximating mathematics”2 and that “the universe is a mathematical 

structure.”3  

 

While this may at first sight appear radical, Tegmark reminds us that “The idea that our 

universe is in some sense mathematical goes back at least to the Pythagoreans…  Galileo 

Galilei stated that the Universe is a grand book written in the language of mathematics.”4 

 

He appears motivated to this position by Wigner’s famous observation regarding the 

‘unreasonable effectiveness’5 and indispensability of mathematics toward science: 

 

“In his above-mentioned 1967 essay, Wigner argued that “the enormous 

usefulness of mathematics in the natural sciences is something bordering 

on the mysterious”, and that “there is no rational explanation for it”. The 

MUH provides this missing explanation. It explains the utility of 

mathematics for describing the physical world as a natural consequence of 

the fact that the latter is a mathematical structure, and we are simply 

uncovering this bit by bit.”6 

 

“After Wigner had written his 1967 essay, the standard model of particle 

physics revealed new “unreasonable” mathematical order in the 

microcosm of elementary particles and in the macrocosm of the early 

universe. I know of no other compelling explanation for this trend than 

that the physical world really is completely mathematical.”7 

 

Indeed, “... the problem is really an old one, and there are old solutions too.  Pythagoras 

claimed that there was no distinction between the world of physics and the world of 

mathematics. Plato argued there was a very great difference: it amounted to concrete 

versus abstract, a distinction denied by Pythagoras. For Plato the concrete world 

instantiated (or `partook of') the abstract forms (albeit imperfectly). This Platonic account 

is somewhat similar to the model-based view... More recently structural realists have 

answered the question by arguing that science is about the discovery of structural aspects 

of the world, and these structural aspects are essentially mathematical.  Radical `ontic' 

structural realists turn this in to an ontological claim: science is about structure and 

structure is all there is.”8 

 

                                                 
2 (Tegmark, 5) 
3 (Ibid.) 
4 (Tegmark, 1) 
5 see (Wigner) 
6 (Tegmark, 4) 
7 (Ibid.) 
8 (Rickles, 1-2) 
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Additionally, when we look to contemporary scientific practice we find that 

working physicists often refer to their scientific models and theories as being 

‘physico-mathematical models’ and may talk about their various mathematical 

models as ‘being isomorphic to the world’ (and also many philosophers of 

science).9  Additionally, Pythagoreanism seems to be a current guiding 

assumption in the investigation of the physical world : 

 

“We have observed that the heart of the new scientific metaphysics is to 

be found in the ascription of ultimate reality and causal efficacy to the 

world of mathematics… the real world in which man lives is no longer 

regarded as a world of substances possessed of as many ultimate qualities 

as can be experienced in them, but has become a world of atoms (now 

electrons), equipped with none but mathematical characteristics and 

moving according to laws fully statable in mathematical form.”10 

 

Indeed, this trend can be traced back to Newton.  Recall his famous maxim 

hypotheses non fingo11 regarding any epistemological or metaphysical objections 

that might be raised against the Principia and his mathematical formalization of 

gravity.   

 

Prima facie it would appear that Tegmark’s MUH has the tacit support of a 

particular intellectual current  in the philosophy of science.  It is at this point that I 

feel it prudent, however, to note that Tegmark relies on a number of philosphical 

assumptions that are highly contentious at the present moment.  First, for 

Tegmark’s MUH to succeed it would have to be the case that we adopt scientific 

realism12 and with the condition that such a scientific realism be supported by a 

form of Ontic Structuralism.13   

 

Secondly, Tegmark (and those who have espoused Ontic Structuralism) appear 

committed to a particular view of just what a scientific theory amounts to: the semantic 

view of scientific theories.  Additionally, Tegmark’s particular commitment to this view 

                                                 
9 consider “We may then say that the theory is true if it is isomorphic to the world, and empirically 

adequate if some of its substructures are isomorphic to the observable part of the world” from (Suárez [1], 

2); I note that Suárez seems to prefer a view of scientific representation that is not reliant on isomorphism. 
10 (Burtt, 303) 
11 I feign no hypothesis 
12 Which I infer from his commitment to his so-called External Reality Hypothesis (ERH); (Tegmark, 1) 
13 He states “In the philosophy literature, the name “structural realism” has been coined for the doctrine that 

the physical domain of a true theory corresponds to a mathematical structure, and the name “universal 

structural realism” has been used for the hypothesis that the physical universe is isomorphic to a 

mathematical structure.” (Tegmark, 3); also, “If one rejects the ERH, one could argue that our universe is 

somehow made of stuff perfectly described by a mathematical structure, but which also has other properties 

that are not described by it, and cannot be described in an abstract baggage-free way. This viewpoint, 

corresponding to the “epistemic” version of universal structural realism in the philosophical terminology of 

[Ladyman and McCabe], would make Karl Popper turn in his grave, since those additional bells and 

whistles that make the universe nonmathematical by definition have no observable effects whatsoever.” 

(Tegmark, 4) 



 4 

seems to rely on an isomorphic theory of representation.14  In order to realize his claim 

that “the world is a mathematical structure” it would also appear that Tegmark is 

explicitly committed to a version of mathematical Platonism15, of the ante rem 

structuralist variety recently espoused by Resnik and Shapiro (among others).  I will note 

that Tegmark’s position gives some flexibility as to whether mathematical structures are 

to be understood as per the so-called plenitudinous16 Platonist position (“the central thesis 

of this theory is that every logically consistent mathematical theory necessarily refers to 

an abstract entity”17 or “It is the thesis that any mathematical object which can exist, does 

exist.”18) or to a more restricted “computable”19 form of Platonism. 

 

Thirdly, Tegmark explicitly commits to modal realism as a way to defeat the problem of 

contingency (crassly, why some but not all?).20 He also appears to endorse both the Many 

Worlds Interpretation (MWI), as a way to overcome the problem of measurement, and 

theories of cosmological symmetry breaking in order to deal with the ‘fine-tuned’ nature 

of the universe.   

 

I have neither the resources or the space to investigate the scientific and philosophical 

controversy surrounding the ontological status of possibilia, modal realism or the MWI.  

For our present purposes, it should, however, suffice to examine Tegmark’s realism, 

structuralism and Platonism (and how these notions relate). 

 

In this way, the veracity of the MUH can perhaps be put as follows: 

 

[1.0] Ontic Structuralism (is true) 

[1.1] Ante rem structuralism (is true) 

[1.2] The Isomorphic Theory of Representation (is true) 

-------------------------------------- 

[C] MUH (is true) 

 

I will now sketch out some of the territory we will be exploring in the remainder of this 

essay.  Worrall articulated structural realism as a way to synthesize a response to 

“arguably the two most compelling arguments around”21 - “the no miracles argument, 

and the pessimistic meta-induction”22- regarding the debate over realism in the 

philosophy of science.  This view is a revival of positions that trace their lineage back to 

                                                 
14 “We write is rather than corresponds to here, because if two structures are isomorphic, then 

there is no meaningful sense in which they are not one and the same… If our external physical reality is 

isomorphic to a mathematical structure, it therefore fits the definition of being a mathematical structure.” 

(Tegmark, 4) 
15 He states that for the MUH to be true “mathematical structures need to be to be real” (Tegmark, 22) 

presumably in an ontological sense. 
16 what has been also dubbed Full-Blooded Platonism; see (Balaguer) 
17 (Horsten) 
18 (Restall, 82) 
19 see (Tegmark, 20-4) 
20 (Tegmark, 17) 
21 (Ladyman, 409) 
22 my emphasis; (Ibid.)  
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Russell, Cassirer and Poincaré.  Two forms of this structuralism tend to dominate the 

contemporary field: epistemic structural realism23 (ESR), is the view that we should 

commit ourselves only to the mathematical content of, and not to the objects talked about 

by, scientific theories and the more radical view, ontic structural realism (OR), which 

denies the epistemic limitations posed by ESR by asserting that structures are all that 

there are.   

 

Meanwhile, structuralism has acquired advocates in the philosophy of mathematics.  

Shapiro has advocated ante rem mathematical structuralism (ARS) to resolve difficult 

problems facing the mathematical realist.  Opponents of this view have taken on the 

mantle of in re categorical structuralism (IRS).   

 

2. Structure 

 

Structure is a basic concept.  A structure is some collection of objects organized into a 

pattern or arrangement: a group of bricks are arranged into a building, small pebbles are 

placed in a pile.  Intuitively, a structure is a set of objects with a set of relations over 

those objects.  This basic concept has powerful applications.  In mathematics, the notion 

of structure has been extended into many formal systems through model theory.  For 

example the sentence ‘1+1=2’ is satisfied by24 the model theoretic structure {|N|, +, 0, <, 

}25 which is characterized by the axioms of Peano arithmetic.  This structure is a model 

for arithmetical statements where N26 is the domain of discourse27 over which the various 

relations {+, <, } operate.   

 

From this basic introduction we will attempt to flesh out the notion and defining 

characteristics of structure.  It will be necessary, in order to give a rigorous analysis of 

these concepts, to delve further into the central, and essential, components of model 

theory.  This requires, in turn, for us to investigate the zero- and first-order predicate 

logics - familiar territory for philosophers - which will allow us to proficiently enter into 

the debate surrounding structuralism in the philosophy of science and mathematics. 

 

In general, logic is the science of truth – how truth values can be derived from other truth 

values using various inference rules and deduction.  A zero-order logic deals in 

propositions or declarative sentences which can be assigned a truth value (in our present 

case, we will be considering binary truth valued systems only).  For our purposes we will 

employ a simple propositional calculus of the axiomatic form developed by 

Łukasiewicz.28   

 

Briefly, a “language is determined by its symbols along with its syntactic formation rules.  

A calculus is a language together with axioms and/or rules of inference for making 

                                                 
23 Worrall’s original position has been referred to by this moniker. 
24 or is true in 
25 (Doets, 1) 
26 or {1, 2, 3, …} 
27 or the objects we are discussing as in the example of bricks or pebbles above 
28 see (Ó Dúnlaing) 
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deductions within the formal language.  A logic is a language along with a semantics to 

interpret that language.”29  We take our propositional calculus (alternatively called a 

sentential calculus) to be called L1.  We define L1 as per the following: 

 

[2.0] L1 = {A, Z, I, } 

 

[2.1] A is a (presumably) finite set of propositional variables (alternatively: sentence 

letters), such that A = {A0
0, A1

0, …, B0
0, B1

0, …, …, Z0
0, Z1

0, …} 

 

[2.2] Z is the zeta set of inference rules valid in L1.  We will here include only the 

modus ponens, such that Z = {p, p → q ├ q} 

 

[2.3] I is the set of axiom schemata for our logic L1, such that: 

[2.3] I = AS1AS2AS3  

[2.4] AS1 = {A → (B → A)} 

[2.5] AS2 = {(A → (B → C)) → ((A → B) → (A → C))} 

[2.6] AS3 = {(A → B) → (B → A)} 

 

[2.7]  is the set of primitive logical operators (logical connectives) for L1, such that: 

[2.8]  = 1  2 

[2.9] Where 1 is the set of logical connectives of arity 1, such that 1 = {}30 

[2.10] Where 2 is the set of logical connectives of arity 2, such that 2 = {→}3132 

 

[2.11] The well-formed formulae (wff) of L1 are recursively defined as follows: 

[2.12] Any , where  is a propositional variable of L1, is a formula. 

[2.13] If   is a formula then,  is a formula. 

[2.14] If  and 33 are formulas then,  →  is a formula. 

[2.15] There are no other wff. 

 

[*] We follow standard convention regarding parenthetical dropping, quotation and 

uniform substitution. 

 

We now expand on L1 by adding the basic apparatus of a first-order34 calculus.   We will 

call our first-order calculus L2.  Simply, we can define L2 by adding the following to L1: 

                                                 
29 his emphasis; (Mattison, 1) 
30 The truth table for this connective is: 

A A 

T F 

F T 
31 The truth table for this connective is: 

A B  A  B 

T T T 

T F F 

F F T 

F T T 
32 Three auxiliary definitions take us to the familiar set  of logical connective {,, , →, ↔}:  

(i) pq :df p→q (ii) pq :df (p→q) (iii) p↔q :df ((p→q)→(q→p)) 
33  and  are meta-variables which range over the expressions of L1. 



 7 

variable, quantifier, relation, and function (operation) symbols along with additional 

axiom schemata, rules of inference and wff formation rules. 

 

For brevity’s sake, we will only treat some of these basic notions here: 

 

[2.16] Arity is the number of arguments that a relation or a function can take. 

[2.17] The relation35 symbols in the alphabet (vocabulary) of L2 comprise a set of n-ary 

relation symbols usually denoted as per the following:  

{R0
0, R1

0, …, R0
1, R1

1, …, R0
2, R1

2, …, …, R0
n, R1

n,…} 

[2.18] A predicate is an unary relation.   

[2.19] A sentence letter is a zero-place (zero-arity) relation symbol. 

[2.20] The function36 symbols in the alphabet of L2 comprise a set of n-ary function 

symbols usually denoted as per the following:  

 {0
0, 1

0, …, 0
1, 1

1, …, 0
2, 0

2, …, …, 0
n, 1

n,…} 

[2.21] Where a constant symbol is a zero-place (zero-arity) function symbol. 

[2.22] The variable37 symbols in the alphabet of L2 comprise a set of variable symbols 

usually denoted as per the following: {n0, n1, …, o0, o1, …, …, z0, z1, …} 

 

[2.23] The set of quantifier symbols in the alphabet of L2 is as follows: {}38 

 

[2.24] We add two axiom schemata to the set axiom of schemata in L1: 

[2.25] AS4 = {x F(x) → F(y)} 

[2.26] AS5 = {F(y) → x F(x)} 

[2.27] Where F(x) is any sentential formula in which x occurs free, y is a term, F(y) is 

the result of substituting y for the free occurrences of x in sentential formula F, 

and all occurrences of all variables in y are free in F.39 

 

[2.29] We join modus ponens with two additional rules of inference. 

[2.30] Z is the zeta set of inference rules valid in L2, such that: 

[2.31] Z = MP  I1  I2 

[2.32] MP = {p, p → q ├ q} 

[2.33] I1 = {G → F(x) ├ G → x F(x)} 

[2.34] I2 = {F(x) → G ├ x F(x) → G} 

[2.35] Where F(x) is any sentential formula in which x occurs as a free variable and x 

does not occur as a free variable in formula G.40 

 

                                                                                                                                                 
34 A logic which deals with a single-sorted domain of discourse and whose quantifiers do not range over 

sets, relations or predicates. 
35 A relation is an operator which assigns elements in the domain of discourse to a truth value. 
36 Functions are those operators which assign elements in the domain of discourse to other elements in the 

domain of discourse. 
37 These variables range over the domain of discourse. 
38 We define  as per the following : (x A :df xA) 
39 We here use the axiom schemata outlined in (Sakharov). 
40 (Ibid.) 
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[*] We follow standard convention regarding parenthetical dropping, wff and term 

formation, quotation and uniform substitution. 

 

We will now lay the framework for how to imbue our formal calculus L2 with a 

semantics thereby giving our ‘lifeless’ symbols meaning.  To accomplish this, we turn to 

model theory.  Briefly, model theory was initiated to aid in the investigation of formal 

languages.  Model theory has been extended into a full-blown mathematical enterprise 

which seeks to “study the interpretation of any language, formal or natural, by means of 

set-theoretic structures.”41 This enables the investigation of new symbols that are added 

to a formal system and reveals how different formal systems, or sentences in different 

formal systems, can be related or meaningfully derived from each other.  Model theory 

employs a relevant notion of structure for both scientific and mathematical structuralism.  

Briefly, each mathematical structure is tied to a particular first-order language.42  We 

spell this out more formally43: 

 

[2.36] A first-order structure K is defined as an ordered pair {|K|, }. 

 

[2.37] |K| is the universe or domain of discourse for the structure K. 

 

[2.38]  is a function whose domain is a set of non-logical symbols.   

[2.39] This domain is called the signature of K, such that:  

[2.40] sig(K) = {R1, R2, R3, …, Rm, 1, 2, 3, …, z, c1, c2, c3, …, cw} 

[2.41] To each n-ary relation symbol R  sig(K) we assume that  assigns an n-ary 

relation: R  |K|n 

[2.42] To each n-ary function symbol   sig(K) we assume that  assigns an n-ary 

function, such that  : |K|n  |K| 

[2.43] To each constant symbol c  sig(K) we assume that  assigns an individual 

constant: c  |K| 

 

[2.44] Given a structure K and a sentence  such that sig()  sig(K) we write ‘K╞ ’ or 

K satisfies  ( is true in K). 

[2.45] Let S be a set of sentences. A model of S is a structure M such that  

M╞  for all   S, and sig(M) = sig(S). 

[2.46] The class of all models of S is denoted Mod(S). A sentence  is said to be a 

logical consequence of S (written S╞ ) if sig()  sig(S), and M╞  for 

all M  Mod(S). 

[2.47] A theory is a set T of sentences which is consistent and closed under logical 

consequence; in other words, T has at least one model, and   T whenever 

 is a sentence such that sig()  sig(T) and M╞  for all M  Mod(S). 

[2.48] If A is a model class, we write Th(A) for the theory of A, i.e. the set of 

sentences  such that sig()  sig(A) and M ╞  for all M  A. 

[2.49] If T is a theory and S  T, we say that S is a set of axioms for T if 

                                                 
41 (Hodges) 
42 We will here investigate only the first-order model theory. 
43 definitions from (Simpson, 9-11) 
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T = Th(Mod(S)). If there exists a finite set of axioms for T, we say that T 

is finitely axiomatizable. 

 

[2.50] Two structures K and B are said to be isomorphic (written K  B) if 

sig(K) = sig(B) and there exists an isomorphic map of K onto B, i.e. 

 i : |K|  |B| such that: 

[2.51] i is one-one and onto; 

[2.52] RK(a1, …, an) if and only if RB(a1, …, an); 

[2.53] i(K(a1, …, an)) = B(i(a1), …, i(an)); 

[2.54] i(cK) = cB. 

 

We see then that a structure, in the model-theoretic or Tarskian sense, is a way of linking 

a formal calculus (such as L2) with a semantics:  

 

“A structure contains interpretations of certain predicate, function and 

constant symbols; each predicate or function symbol has a fixed arity. The 

collection K of these symbols is called the signature of the structure. 

Symbols in the signature are often called nonlogical constants, and an 

older name for them is primitives. The first-order language of signature K 

is the first-order language built up using the symbols in K, together with 

the equality sign =, to build up its atomic formulas. … If K is a signature, 

S is a sentence of the language of signature K and A is a structure whose 

signature is K, then because the symbols match up, we know that A makes 

S either true or false.”44 

 

A relvent notion here is the concept of a signature.  The signature of a language 

differentiates it from a (purely) logical calculus and/or from another formal language 

(hence the employment of the word 'signature') and is often employed as a shorthand to 

refer to particular langauges: “A language L is a set consisting of all the logical symbols 

with perhaps some constant, function and/or relational symbols included… Note that all 

the formulas of L are uniquely described by listing only the constant, function and 

relation symbols of L.”45 

 

We now turn to the notion of models.  For example we say that “R = {R, <, +, ∙, 0, 1} and 

Q = {Q, <, +, ∙, 0, 1}, where R is the reals, Q the rationals, are models for the language L 

= { <, +, ∙, 0, 1}.”46  As mentioned in [2.44] above: Given a structure K and a sentence  

such that sig()  sig(K) we write ‘K╞ ’.  We can then via [2.45] say: A model of S is a 

structure M such that M╞  for all   S, and sig(M) = sig(S).  We then denote ‘the class 

of all models of S’ with ‘Mod(S)’, and can specify a particular model of S: ‘W, W  

Mod(S)’. 

 

3. The Semantic View of Scientific Theories 

 

                                                 
44 (Hodges) 
45 (Weiss and D’Mello, 5) 
46 (Weiss and D’Mello, 13) 
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The older ‘syntactic’ or ‘recevied view’ of scientific theories was developed by 

philosophers  motivated toward a logical empiricism.47  This received view holds that “a 

model is a model for a theory and thus just another interpretation of the theory's 

calculus”48 and “that a theory is an uninterpreted, or partially interpreted, axiom system 

plus correspondence rules, or co-ordinating definitions, that mediate so as to provide for 

the theory-world connection.”49   

 

Various logical empiricist philosophers advanced this view upon recognizing “that some 

elements of our theoretical knowledge seem to be independent of the empirical facts.”50  

For example, “Newton’s second laws states that the force on a body is proportional to the 

rate of change of its momentum, where the constant of proportionality is part of what 

gives meaning to the concepts employed to describe the phenomena.”51  The logical 

empiricists argued that: 

 

“a physical theory can be split into a part that expresses the definitions of 

the basic concepts and the relations among them, and a part which relates 

to the world.  The former part also includes the purely mathematical 

axioms of the theory, and trivially all the logical truths expressible in the 

language of theory.  If this part of the theory constitutes a priori 

knowledge, it is purely of matters of convention.  The factual content of 

the theory is confined to the latter part, so the fundamental empiricist 

principle that the physical world cannot be known by pure reason is 

satisfied.”52 

 

Its opposite, the semantic view prevails in framing the contemporary scientific 

structuralism.53  This position “rejects the need for, and possibility of, correspondence 

rules and instead uses models, in the Tarskian sense, to provide an unmediated theory-

world connection.”54  This view identifies a scientific theory with a particular set-

theoretic or class of model-theoretic structures55 as per section two: “That is, the semantic 

view ‘construes theories as what their formulations refer to when the formulations are 

given a (formal) semantic interpretation’… Theories on this view are not linguistic, but 

rather abstract, set-theoretic entities – models of their linguistic formulations.”56 

 

Perhaps the most glaring problem facing the syntactic view is its reliance on a distinction 

between theoretical and observational terms.57  This is controversial notion that has met 

                                                 
47 (Ladyman and Ross, 111) 
48 their emphasis; (da Costa and French [1], S117) 
49 (Brading and Elaine Landry [1], 6) 
50 (Ladyman and Ross, 111) 
51 (Ibid.) 
52 (Ladyman and Ross, 111-2) 
53 (Brading and Landry [1], 5) 
54 (Brading and Landry [1], 7) 
55 detailed exploration of ‘set-theoretic predicates’ and model-theoretic model classes will follow further 

below 
56 (Chakravartty [1], 325-6) 
57 (Ladyman and Ross, 115) 
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with great criticism: “It has been widely argued (for example by Punam 1962) that there 

is no objective line to be drawn between observational and theoretical language, and that 

all language is theory-dependent to a degree.”58  I note also that the syntactic view’s 

reliance on linguistic formulations generates a host of problems due to its need for rules 

of correspondence in order to secure the referents and truth-conditions for those 

linguistically formulated theories.  Prima facie these considerations suggest to me that an 

account of scientific theories, and how the putative truth of these theories, which is not 

‘language’ dependent (in this way) is much more preferable as a means to either secure 

the truth, or observing the actual practice, of the contemporary scientific activity. 

 

I will not go into great detail regarding the many other problems levied against the 

syntactic view here59 – for our purposes we will agree with Ladyman and Ross that the 

preferred way to understand, interpret and analyze scientific theories is “in terms of 

mathematical and formal structures”60 - that we have reason to prefer the semantic view, 

despite its many problems61, over the syntactic view.   

 

However, there is signaficant disagreement over just how we are to understood the 

semantic view and the notion of ‘model’ that it espouses: “despite all the discussion about 

the concept of `model' of a physical theory in the literature, the precise characterization of 

this concept remains elusive.” 62 

 

“For some a model, as well as being a ‘structure’ that satisfies certain 

axioms, also includes a mapping from elements of a linguistic formulation 

to elements of that structure… Others hold that one should not think of a 

model as including any such interpretation of sentences... The models at 

issue are by definition simply those that satisfy, for example, the 

mathematical equations of a quantitative theory, such equations being 

linguistic devices; but theories themselves are models in the sense of 

“pure” structure: abstract entities and relations among them, excluding the 

linguistic formulations with which they may be linked.”63 

 

Despite, perhaps lacking a specific definition of model, it is clear that model-theoretic 

structures and models (as per section two) motivate the semantic view.  McEwan 

observes that proponents of this view tend to assert that “a theory… is a collection of 

model-theoretic models…”  and “to present a theory, we define the class of its models 

directly.”64   

 

Some commentators have alleged that this characterization of the semantic view is 

‘naïve’ and ought to be abandoned.  Unfortunately, “the way the semantic view is often 

                                                 
58 (Ibid.) 
59 see (Ladyman and Ross, 111-8) for a more thorough list of objections against the syntactic view 
60 (Ladyman and Ross, 118) 
61 see (Chakravartty [1]) and (Krause and Bueno) for recent objections to the semantic view; see  

(Suárez [2]) for criticism of the isomorphic representation view. 
62 (Krause and Bueno, 4) 
63 (Chakravartty [1], 326) 
64 (McEwan, 2) 
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presented, there is little said by its proponents to distance themselves from the naïve 

view”65 and “the semantic view, might easily be conflated with the naïve view”66 and 

a number of distinct problems arise if we do conflate the semantic view with the naïve 

view.  McEwan has argued that the naïve view would lead us to conclude that “models 

are both truth-bearers and truth-makers“67 and that “when defining [a] theory we must 

independently identify all the instances when the theory is true” thereby rendering the 

truth of our theory, for any model, trivial.68  “These problems undermine the naïve view 

as a plausible account of scientific theories” 69 

 

Two other noteworthy problems arise from the way that the semantic view has 

traditionally been framed in.  The problem of representation looms large: 

 
“The first and, arguably, the most serious problem confronting the realist 

or empiricist who adopts the naïve view is the problem of representation: 

neither theories nor models on the naïve view play a representational role.  

This problem is a result of aspects … of the naïve view. A theory is 

identified with a class of models and the truth of a theory is wholly 

determined by class membership. In this analysis the only things 

considered are model-theoretic models and classes of model-theoretic 

models. Where then does `the world' come into play?”70 

 
there are meta-mathematical considerations as well: 

 
“Model theory, which has been the inspiration for much that has been said 

on models of scientific theories in general, articulates the notion of a 

model for formal first-order axiomatic systems only… But scientific 

theories, in general, are described only informally (consider, for instance, 

the theories in biology),and involve more than first-order languages. As a 

result, we don't have a corresponding well defined “model theory" in such 

cases.”71 

 

While these problems remain undecided, a few strategies have been attempted by 

both realists and empiricists alike in order to address some of these  concerns; 

particularly regarding the problem of representation – i.e. just how theories and 

models, under the semantic view, ‘link to the world’.  Defenders of the semantic 

view have appealed to a notion of ‘pragmatic truth’ “which holds that the 

‘pragmatic’ truth of an assertion depends on its practical effects or consequences, 

formulated in terms of a set of basic propositions, the latter being accepted as true 

in the correspondence sense”72, set-theoretic predicates and partial structures as a 

                                                 
65 (Ibid.) 
66 (McEwan, 7) 
67 (McEwan, 4) 
68 (McEwan, 5) 
69 (McEwan, 7) 
70 (McEwan, 4) 
71 (Krause and Bueno, 4) 
72 some references removed, see original; (da Costa and French [2], 254-5) 
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way to meet some of these challenges.  I will here attempt to flesh out those latter 

two ideas.  

 

Set-theoretic predicates and partial structures have been proposed as ways to 

(perhaps) resolve some of the ambiguity surrounding just what models are and to 

give a better account of scientific theory revision.  Ostensibly, these tools also 

provide a link between data models and the sometimes Byzantine mathematical 

edifice employed in scientific theory.   

 

In order to give a more precise notion of just what a scientific theory amounts to under 

the semantic view and to clarify the positive claim being made by those who are 

proponents of the semantic view, a number of commentators have been lead to the 

position that ‘a scientific theory is to be identified with, or given by, a particular set-

theoretic predicate.’  Recall that if “a model-theoretic model is an interpretation on which 

some set of sentences are true, then one normally takes a theory to be a set of sentences 

expressed in some formal language. We can call this the model-theoretic notion of a 

theory, or model-theoretic theory. A model-theoretic theory is true for a given model if 

and only if each of the theory's sentences are true in that model. Associated with every 

model-theoretic theory is a class of model-theoretic models, where the theory is true for 

each model which comprises this class…”73 

 

This leads us to “call the models found in Tarski's analysis and the models of 

model-theory model-theoretic models” remembering that “a model-theoretic 

model is an interpretation which satisfies some set of sentences (or sentential 

formulae). An interpretation specifies a set of individuals (the domain or universe 

of discourse) and defines of all the appropriate symbols (i.e., constant, function 

and predicate symbols) of the language on that set.” 74 

 

Following the conventions laid down in section two - that we can denote ‘the class of all 

models of S’ with ‘Mod(S)’, or can specify a particular model of S: ‘W, W  Mod(S)’ – 

and that the semantic view has traditionally advocated that “Theories… are not linguistic, 

but rather abstract, set-theoretic entities – models of their linguistic formulations”75, it 

follows that the semantic view sees a scientific theory S (i.e. a set of propositions or 

sentences in a language, axiomatic or not) as being given by a class of models W.  It is 

then possible to stipulate a defining characteristic of all W, W  Mod(S). 

 

With that in mind, it has been argued: “to axiomatize a theory is to define a set-

theoretical predicate"76: 

 

“da Costa and Chuaqui (1988) have convincingly argued that these set-

theoretical predicates can be identified with the Bourbaki species of 

structures. A scientific theory may thus be characterized by a set-theoretic 

                                                 
73 (McEwan, 4) 
74 (Ibid.) 
75 (Chakravartty [1], 325-6) 
76 inner quotation removed, see original; (da Costa and French [2], 253) 
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predicate in such a way as to connect this approach with standard 

(mathematical) model theory.”77 

 

Thus, for example, “‘classical particle mechanics’ (that is, the models of a classical 

particle mechanics) emerges from structures of the form P, s, m, f, g, where P is 

the set of ‘particles’, s is the position function, m is the mass function, f stands for the 

internal forces and g represents the external force function - all of them obeying certain 

postulates.”78   

 

This approach is motivated from the fact that one can develop set-theoretic predicates to 

describe different mathematical structures.   A group, for example, can be considered as 

any n-tuple (signature) which satisfies the following conditions79: 

 

ЏG = A,,*,I 

 

where A is a non-empty set,  is a binary operator on A, * a unary operator on A, and I and 

element of A, such that: 

 

1. (x  y)  z = x  (y  z) 

2. x  I = I  x = x 

3. x  x* = x*  x = I 

 

The corresponding predicate is then: 

 

P(x) ↔  A  B  C  D (x = A,B,C,D  A is a non-empty set  B is a binary 

operation on A  C is unary operator on A  D is an element A   x  y  z 

((x,y,z)  A → (xBy)Bz = xB(yBz) etc.)) 

 

“The structures which satisfy this predicate are the models of the theory. That is, when a 

theory is fornalized in this way, the mathematical structures which satisfy the predicate 

are the models of this predicate, or the structures of this species of structure, P(x), or 

more simply, P.”80 

 

I will now turn to the second important strategy, which is currently being pursued as part 

of the programme for Ontic Structuralism, is found in the development of partial 

structures.  The scientific structuralist capitalizes on the semantic view of scientific 

theories.  By identifying scientific theories with model-theoretic structures, the scientific 

structuralist is presumably able to meet the challenges of the notorious pessimistic meta-

induction.  We will now demonstrate how this challenge might be met.  The gist of this 

idea is that a scientific model might be extended across, or embedded into, another 

scientific model81: 

                                                 
77 (da Costa and French [2], 253) 
78 some notation altered, see original; (Krause and Bueno, 3) 
79 work borrowed from (da Costa and French [2], 253) 
80 (da Costa and French [2], 253-4) 
81 We borrow our definitions and work from (Bueno, 225-231) and (French, 105-6). 
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Essentially, the structures that are talked about under the partial structures programme are 

variations on the model-theoretic notion of structure such that: 

 

[3.0] a = A, RiiI 

 

where A is the set of individuals of the domain under consideration and Ri, i I, is a 

family of partial relations82 defined on A.  If A is a non-empty set, then an n-place partial 

relation R over A is a triple R1, R2, R3, where R1, R2, and R3 are mutually disjoint sets, 

with R1  R2  R3 = An, and such that:  

 

[3.1] R1 is the set of n-tuples that belong to R. 

[3.2] R2 is the set of n-tuples that do not belong to R. 

[3.3] R3 is the set of n-tuples for which it is not defined whether they belong or not to R. 

 

A partial structure ‘a’ can then be extended into a total structure via so-called a-normal 

structures, where the structure b = A’, Ri’iI is said to be an a-normal structure if: 

 

[3.4] A = A’ 

[3.5] Every constant of the language in question is interpreted by same object both in a 

and in b, and 

[3.6] Ri’ extends the corresponding relation Ri, in the sense that, each Ri’ is defined for 

every n-tuple of objects of its domain; such that for every x  An, x  falls under 

either R1 or R2. 

 

A sentence ‘s’ is then said to be quasi-true (in ‘a’ according to ‘b’) if:  

 

[3.7] ‘a’ is a partial structure. 

[3.8] ‘b’ is an a-normal structure; and 

[3.9] ‘s’ is true in ‘b’ in conformity with Tarski’s definition of truth. 

 

Formally, if we have two partial structures: 

 

a = A, RiiI  and  a’ = A’, Ri
'iI 

 

(where Ri and Ri’ are partial relation as above, so that Ri = R1, R2, R3 and  

Ri’ = R1’, R2’, R3’) then a function  from A to A’ is a partial isomorphism between a 

and a’ if: 

 

[3.10]  is bijective and 

[3.11] for all x, y  A, R1xy ↔ R1’(x)(y) and  

[3.12] for all x, y  A, R2xy ↔ R2’(x)(y) 

                                                 
82 “[For ] the sake of simplicity, [I] omit operations and take structures to be a domain endowed with 

certain relations. This is can be done without loss of generality because operations reduce to relations” and 

“Basically, an operation taking n arguments is equivalent to a n+1 place relation.”  (Frigg, 55) 
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Note:  If R3 = R’3 = , we no longer have partial structure but ‘total’ ones which 

recovers the standard notion of isomorphism. 

 

“Thus, two models may be related not by inclusion but by this somewhat weaker notion 

of partial isomorphism which captures the idea that they may share parts of their 

structure.”83  As a note, “Partial homomorphism is obtained if injection replaces bijection 

in condition [1] immediately above and implication replaces equivalence in condition [2] 

immediately above.”84 

 

Using the partial structures approach it has been shown that a sort of hierarchy where 

data models occupy the lowermost position can be linked to the abstract mathematical 

models which occupy the highest position.  “Thus, in terms of the hierarchy given in [The 

Application of Bose-Einstein Statistics] … and putting things a little crudely, we have 

something like the following: 

 

A4 = <D4, R4i, f4j, a4k>iI, jJ, kK 

A3 = <D3, R3i, f3j, a3k>iI, jJ, kK 

A2 = <D2, R2i, f2j, a2k>iI, jJ, kK 

A1 = <D1, R1i, f1j, a1k>iI, jJ, kK 

 

where A4 represents the mathematical structure of group theory (and where Redhead’s 

surplus structure is represented in terms of an associated family of structures a4k, kK), 

A3 represents the theory of Bose-Einstein statistics, A2 represents London’s model, with 

all its idealizations and A1, for simplicity, is a condensed representation of the data 

models, experimental models and so forth.”85 

 

4. Additional Concerns 

 

Due to space constraints, a full survey of the ongoing debate surrounding both just how 

we are to understood the semantic view and the plausibility of the semantic view cannot 

be carried out here.  However, as noted in section three the problem of representation 

looms large – asking us how a scientific theory, under the semantic view, can be 

understood to represent something in the world?  Additionally, some commentators have 

alleged that isomorphism is not an appropriate way to establish representation.  They 

have asserted the rather evident observation that “Isomorphism is symmetric, reflexive 

and transitive while representation is not.”86  While weaker relations have been offered to 

replace isomorphism including homomorphism, partial isomorphism (above) and 

Swoyer’s /-morphism,87 all of them run into similar problems.   

 

                                                 
83 (French, 106) 
84 (French, 106-7) 
85 (French, Bueno and Ladyman, 514) 
86 (Frigg, 10) 
87 (Suárez, 35,38) 
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When we say that “Isomorphism is symmetric, reflexive and transitive while 

representation is not” exactly what are we saying that representation is not?  Now, 

presumably if ‘x represents y’ then x stands in relation to y.   

 

[4.0] A relation R on a set B is called reflexive if and only if a, a  R for every a  

B. 

[4.1] A relation R on a set B is called irreflexive if and only if a, a  R for every a  

B. 

[4.2] A relation R on a set B is called symmetric  if and only if whenever a, b  R it 

is also the case that b, a  R for any a, b  B. 

[4.3] A relation R on a set B is called antisymmetric if and only if whenever a, b  R  

and a  b it is the case that b, a  R for any a, b  B. 

[4.4] A relation R on a set B is called transitive if and only if whenever a, b  R and  

b, c  R it is the case that a, c  R for any a, b, c  B. 

 

Surely something can represent itself: “I don’t say that a representation is something that 

represents something else, because a representation can represent itself.  (To take a 

philosophically famous example, the ‘Liar Paradox’ sentence ‘This sentence is false’ 

represents the quoted sentence itself).”88  But this does not necessarily imply that 

everything represents itself.  Thus representation is not necessarily reflexive nor either 

irreflexive failing conditions [4.0] and [4.1].  Similarly, for some x that represents some y 

it might be the case that y also represents x.  But, this is not sufficient to suggest that 

representation is symmetric nor either antisymmetric failing conditions [4.2] and [4.3].  

Isomorphism, then, appears to be ‘too strong’ to serve as our vehicle for representation. 

 

One area that has been unfortunately neglected (and this has been a point raised by a 

number of philosophers89) in most philosophical discourse about models is that important 

area where models and theories are linked to data (or vice-versa).  To overcome this 

Brading and Landry have suggested that scientific theories, under the semantic view, 

should not be construed as representing but rather as presenting.  They argue for “a 

minimal construal of both scientific structuralism and structural realism”90 which they 

suggest is “a methodological stance” whereby “we forgo talk of ‘the structure of the 

phenomena’ and simply begin with data models”91 in order to side-step the problem of 

representation all-together.   

 

Recall that as per section three, a scientific theory was characterized as a class of models 

taking the form: 

 

“A4 = <D4, R4i, f4j, a4k>iI, jJ, kK 

A3 = <D3, R3i, f3j, a3k>iI, jJ, kK 

A2 = <D2, R2i, f2j, a2k>iI, jJ, kK 

                                                 
88 (Crane, 10) 
89 see (Cartwright) 
90 (Brading and Landry [1], 26) 
91 (Brading and Landry [1], 9) 
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A1 = <D1, R1i, f1j, a1k>iI, jJ, kK”92 

 

where A1 is the class of data models for that particular scientific theory. 

 

For Brading and Landry, the move from presentation to representation hinges on 

“connecting data models to the phenomena.”93  “Connecting theoretical models to data 

models…  can be accounted for solely in terms of presentation of shared structure.”  

However, connecting data models to the phenomena  “demands the addition of something 

more.”94  “Thus, two things are required to connect the high level theory to the phenomena: 

an  experimental theory of the data and an empirical theory of the phenomena.”95 

 

Hence, for Brading and Landry, the move to ontological realism requires a theory of 

representation, which in turn requires a theory linking the structure of data to the structure of 

phenomena.  “From an empirical stance, one may hold that what structures the phenomena is 

the high-level theory, whereas from a realist stance one may hold that what structures the 

phenomena is the world.”96  Thus,  “van Fraassen, as a ‘structural empiricist’, suggests that 

we simply identify the phenomena with the data models.”97  Consider: 

 

“An empirical model is one which is derived from and based entirely on 

data.  In such a model, relationships between variables are derived by 

looking at the available data on the variables and selecting a mathematical 

form which is a compromise between accuracy of fit and simplicity of 

mathematics… The important distinction is that empirical models are not 

derived from assumptions concerning the relationships between variables, 

and they are not based on physical laws or principles.  Quite often, 

empirical models are used as ‘submodels,’ or parts of a more complicated 

model.  When we have no principles to guide us and no obvious 

assumptions suggest themselves, we may (with justification) turn to data 

to find how some of our variables are related.”98 

 

This does not sit very well with them for “if we are to be motivated to move beyond the more 

modest methodological stance we need reasons. In particular, if we are to adopt either the 

empiricist or the realist alternative, we need a justification for the claim that data models 

share the same structure as the phenomena and, as a result, that the former can be taken as 

representations of the latter.”99 

 

However, “from a realist stance we may say that what structures the phenomena is the 

world” such that “Structural realists, such as French and Ladyman, who adopt a realist stance 

and so presume that the world structures the phenomena, invoke the ‘no miracles’ argument 

to explain the necessity of identifying the structure of data models and the structure of the 

                                                 
92 (French, Bueno and Ladyman, 514) 
93 (Brading and Landry [1], 18) 
94 (Ibid.) 
95 (Brading and Landry [1], 8) 
96 (Brading and Landry [1], 21) 
97 (Brading and Landry [1], 26) 
98 (Edwards and Hamson, 102) 
99 (Brading and Landry [1], 21) 
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phenomena; it is used to argue that if there was no shared structure between the (data models 

of the) theory and the world (the phenomena) the success of science would be a miracle.”100 
 

This is the path I would pursue as a scientific realist.  Essentially, to explain the adequacy 

and application of mathematical models and structures to the empirical without the world, in 

some sense, being inherently structured would require a miracle.  While just what structure 

the phenomena takes and just what structure our data takes is subject to some revision, 

refinement and improvement – the no miracles argument requires that the structure of the 

data (approximately) represents the structure of the phenomena. 

 

While this response may provide a plausible out for the proponent of the semantic view 

in the face of the representation problem, it does not address the shortcomings of the 

Isomorphic Theory of Representation.   

 

5. Scientific Structuralism 

 

Worrall introduced Epistemic Structural Realism (ESR) as a way to preserve realism in 

scientific truth without committing to a full-fledged traditional scientific realism.  There 

are two primary arguments compelling ESR’s inception: the no-miracles argument and 

the pessimistic meta-induction argument.  The no-miracles argument is an abductive 

inference101 which takes the general form: 

 

“(1)  p 

  (2) q is the best explanation of p 

   q”102 

 

Such that  

 

“(1) Mature scientific theories are empirically successful. 

(2) The (approximate) truth of mature scientific theories is the best 

explanation of their empirical success. 

   Mature scientific theories are (approximately) true.”103 

 

The no-miracles argument asks us how the predictive powers of scientific theories are so 

successful if science is not really telling us about real things in the world (which, the 

scientific realist argues, would require a miracle).   

 

The pessimistic meta-induction is essentially the claim that “we cannot commit ourselves 

to the belief in present theories since successful theories throughout the history of science 

were refuted or abandoned.”104  Traditionally, scientific realism asks us to accept that the 

                                                 
100 (Brading and Landry [1], 23) 
101 many commentators have noted that the question of realism in the philosophy of science may really 

come down to whether one accepts the legitimacy of ‘reasoning to the best conclusion’ (i.e. abduction) or 

not 
102 (Wüthrich, 13) 
103 (Ibid.) 
104 (Kantorovich, 2) 
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objects talked about by scientific theories are real, by this antirealist argument it is 

asserted that we cannot take scientific theories or their ontologies at face-value because 

they will likely be discarded. 

 

Worrall advanced ESR as a way to achieve a middle-ground between these two positions.  

“ESR purports to identify the structural content of a theory in such a way as to ensure 

cumulative continuity in that kind of content.”105 Hence, ESR is concerned with the 

preservation of scientific continuity which has been disputed by such thinkers as Kuhn106 

and the pessimistic meta-induction.  Scientific structuralism responds to the charges of 

discontinuity by asserting that certain structural features of differing scientific theories 

remain stable, even in the face of radical changes to the scientific ontology throughout 

history,107 providing a point upon which to affirm the no-miracles argument (science is 

the accumulation of structural information). Essentially, ESR asks us to commit only to 

the mathematical content of scientific theories and admits that our actual knowledge of 

things-in-themselves is limited at best.   

 

To illustrate this I will now turn to a more general view of structure: 

 

“Here, for simplicity, we shall take structures of the form K = A, R, 

where A is a non empty set and R is a binary relation on A, … in doing 

physics one needs more than first order structures, but the considerations 

to be made here can be seen as a first sketch of an idea which can be 

generalized for higher order structures…”108 

 

Let R = {(a, b), (a, c), (c, d), (d, b)}.  We can now derive the following simple diagram: 

 

a → b   

 ↓      ↑  Figure 1: R 

 c → d 

 

“According to Russell, the ‘structure’ of R should not depend on the 

particular terms forming part of the field of the relation, which should be 

modified without altering its structure.”109 

 

Following Russell’s notion of structure we can use Figure 1 to derive: 

  →    

 ↓       ↑  Figure 2: The structure of R. 

   →  
 

                                                 
105 (Saatsi, 2) 
106 see (Kuhn) 
107 (Brading and Landry [2], 21) 
108 (Krause [2], 115) 
109 (Krause [2], 116) 
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Structuralists, in their respective areas of study, tend to assert that these extracted 

structures are what we can investigate and have knowledge of.  As Russell states about 

the physical: 

 

“We can know only what is required in order to secure the 

correspondence. That is to say, we can know nothing of what it is like in 

itself, but we can know the sort of arrangement of physical objects which 

results from their spatial relations… Thus we come to know much more 

about the relations of distances in physical space than about the distances 

themselves.”110  

 

Thus, according to Russell, what we cannot know is physical things as they are in-

themselves but what we can know are the abstract relations by which those things-in-

themselves are arranged.  On this view, what we perceive is in correspondence with what 

is.   

 

Ontic Structural Realism (OR) is a more radical thesis.  Two of the most predominant 

advocates of this position, French and Ladyman, state it thus:  

 

“We regard the ontic form of SR as offering a reconceptualisation of 

ontology, at the most basic metaphysical level, which effects a shift from 

objects to structures. Now, in what terms does such a reconceptualisation 

proceed? This hinges on our prior understanding of the notion of an 

‘object’ which has to do, as we have indicated, with the metaphysics of 

individuality.”111  

 

The traditional view of object-hood is grounded in the notions of quiddity, or the notion 

that each thing has its own essence, and haecceity, or the properties and attributes which 

make something its own particular thing.112  It should be noted that a physical entity has 

been traditionally defined as a three-dimensional individual object located in 

spacetime.113   

 

OR denies the epistemic limitations of ESR by asserting a revisionist metaphysical claim: 

that our traditional ontological category of object-hood is misguided114 that “Structures 

have ontological primacy over objects’ and this either means [1] that structures are all 

that exist or [2] that entities are dependent for their own existence on the existence of 

                                                 
110 his emphasis; (Russell, 14) 
111 (French and Ladyman [1], 37) 
112 these terns are somewhat interchangeable though the prior bears the connotation what it is and the latter 

holds the connotation which it is 
113 (Heller, 4); However, there is still much debate over this definition.  Those who hold that physical 

objects exist only spatially in three dimensions, such that they exist in their entirety at every moment in 

time, are called Endurantists.  Those who hold that a physical object exists spatio-temporally in four 

dimensions, such that an object is identified as the sum of its temporal parts, are called Perdurantists; 

(Dainton, 39-40) 
114(Chakravartty, 867-868) 
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structures.”115  Thus, OR may do away with quiddity or haecceity altogether.  Such a 

move is significantly motivated by work in quantum mechanics116 where the status of 

individuality and object-hood are underdetermined.117  For example, Leibniz’s Principle 

of the Identity of Indiscernibles (PII)118 appears to fail for many subatomic particles.   

 

What does this mean?  First, that physical entities may exist in virtue of structure and 

second, that the traditional characterization of abstract versus physical objects is likely to 

narrow.  As Shapiro puts it “the structuralist perspective is a healthy blurring of the 

distinction between mathematical and ordinary objects.”119  Resnik, a mathematical 

structuralist, explains this further: 

 

“Let me start by considering some physical objects that appear to be as much 

mathematical as physical.  I have in mind quantum particles.  The Ontic Structural 

Realism (OR) is a more radical thesis.  Two of the most predominant advocates of this 

position, French and Ladyman, state it thus:  

 

“We regard the ontic form of SR as offering a reconceptualisation of 

ontology, at the most basic metaphysical level, which effects a shift from 

objects to structures. Now, in what terms does such a reconceptualisation 

proceed? This hinges on our prior understanding of the notion of an 

‘object’ which has to do, as we have indicated, with the metaphysics of 

individuality.”120  

 

The traditional view of object-hood is grounded in the notions of quiddity, or the notion 

that each thing has its own essence, and haecceity, or the properties and attributes which 

make something its own particular thing.121  It should be noted that a physical entity has 

been traditionally defined as a three-dimensional individual object located in 

spacetime.122   

 

OR denies the epistemic limitations of ESR by asserting a revisionist metaphysical claim: 

that our traditional ontological category of object-hood is misguided123 that “Structures 

have ontological primacy over objects’ and this either means [1] that structures are all 

that exist or [2] that entities are dependent for their own existence on the existence of 

                                                 
115 some inner quotations removed for clarification, please consult original; (Kantorovich, 17-18) 
116 see (Rickle and French) 
117 (Krause, 162) 
118 F(Fx↔Fy)→x=y; this essentially says two things are identical when all the properties that are true of 

one thing are the same as all the properties that are true of the other (and vice-versa) 
119 (Shapiro, 256) 
120 (French and Ladyman [1], 37) 
121 these terns are somewhat interchangeable though the prior bears the connotation what it is and the latter 

holds the connotation which it is 
122 (Heller, 4); However, there is still much debate over this definition.  Those who hold that physical 

objects exist only spatially in three dimensions, such that they exist in their entirety at every moment in 

time, are called Endurantists.  Those who hold that a physical object exists spatio-temporally in four 

dimensions, such that an object is identified as the sum of its temporal parts, are called Perdurantists; 

(Dainton, 39-40) 
123(Chakravartty, 867-868) 



 23 

structures.”124  Thus, OR may do away with quiddity or haecceity altogether.  Such a 

move is significantly motivated by work in quantum mechanics125 where the status of 

individuality and object-hood are underdetermined.126  For example, Leibniz’s Principle 

of the Identity of Indiscernibles (PII)127 appears to fail for many subatomic particles.   

 

What does this mean?  First, that physical entities may exist in virtue of structure and 

second, that the traditional characterization of abstract versus physical objects is likely to 

narrow.  As Shapiro puts it “the structuralist perspective is a healthy blurring of the 

distinction between mathematical and ordinary objects.”128  Resnik, a mathematical 

structuralist, explains this further: 

 

“Let me start by considering some physical objects that appear to be as 

much mathematical as physical.  I have in mind quantum particles.  The 

term ‘particle’ brings to mind the image of a tiny object located in space-

time.  But, on what seems to be the consensus view of the puzzling entities 

of quantum physics, this image will not do.  Most quantum particles do 

not have definite locations, masses, velocities, spin, or other physical 

properties most of the time.”129 

 

He elaborates: 

 

“We began by observing that it is usual for philosophers of mathematics to 

distinguish between supposedly abstract, mathematical objects and 

supposedly concrete, physical ones by appealing to the spatio-temporal 

locatability, causal powers, or detectability of the latter.  We now see that 

distinguishing between abstract and concrete objects in this way is 

obsolete.”130   

 

It should be noted that this particular problem, along with the ontological status of the 

wave function, has served as a traditional point of division between realists and 

antirealists in the philosophy of science.  If one adopts scientific realism, that being 

realism in both scientific truth and ontology, and takes contemporary quantum physics 

(with its mathematical edifice and strange ontology) at face-value it appears that the 

traditional category of object-hood and the traditional divisions between physical/abstract 

or physical/mathematical have already been narrowed, regardless of the metaphysical 

stance of OS.  Let us now turn to the mathematical structuralism. 

 

6. Mathematical Structuralism 

 

                                                 
124 some inner quotations removed for clarification, please consult original; (Kantorovich, 17-18) 
125 see (Rickle and French) 
126 (Krause, 162) 
127 F(Fx↔Fy)→x=y; this essentially says two things are identical when all the properties that are true of 

one thing are the same as all the properties that are true of the other (and vice-versa) 
128 (Shapiro, 256) 
129 (Resnik, 102) 
130 (Resnik, 107) 



 24 

Traditionally, the mathematical realist has held a Platonist conception of mathematics - 

that there is an abstract mind-independent mathematical reality where the actual objects 

of mathematical statements reside.  This goes against the common view that mathematics 

is all and only the management of special symbols.  Formalism was a philosophical 

position motivated by this commonsense view asserting that mathematics is a 

meaningless activity characterized by the manipulation of finite strings of symbols.131  It 

was the express goal of Hilbert’s Program to be able to generate a consistent set of 

axioms from which every possible classical mathematical theorem could be derived 

procedurally as a means by which to secure the absolute certainty of mathematical truth.  

However, this activity was more or less halted by Kurt Gödel, a Platonist, who proved 

with his famed Incompleteness Theorems that no such axiomatic framework was 

possible.  The Platonist conception sees mathematics as two parts – an abstract mind-

independent realm and the languages and statements which talk about that realm - 

although these two parts are somewhat interwoven.  It should be noted that a 

mathematician can perform any mathematics regardless of their philosophical view of 

what mathematics ought to be, or what they believe mathematics is.132 

 

Shapiro states that one of his primary motivations for developing ante rem structuralism 

(ARS) is to preserve this sort of conception in mathematics, or the philosophy last 

position, given the long and dignified tradition of mathematics itself.133  However, his 

view does subtly contrast with traditional Platonism.  The traditional view holds that 

numbers, much like physical things, have individual essence, quiddity or haecceity, such 

that ‘one’ is considered to be a separate entity than ‘six,’ what Shapiro might call the 

Independence Intuition.  ARS asserts that the only essence to numbers is that they belong 

to the abstract structure of the natural number line.   

 

Linnebo spells this idea out more clearly: 

 

“Let's now try to be more precise about what the Dependence Claim says. 

Consider the domain D of some mathematical structure. One aspect of the 

Dependence Claim is that in this structure Objects Depend on Objects: 

 

(ODO) Each object in D depends on every other object in D. 

 

For instance, each natural number is said to depend on all the other natural 

numbers in a way that it does not depend on, say, sets. It follows that it is 

impossible for one natural number to exist without all the others existing as well. 

Another aspect of the Dependence Claim is that in mathematical structures 

Objects Depend on Structures: 

 

                                                 
131 (Maddy [2], 23-24) 
132 although this may influence their decision as to which mathematical system they will be inclined to 

investigate - as in the case of Intuitionist mathematics which denies the Law of Double Negation (P  

P) and the Law of the Excluded Middle (P  P) 
133 (Shapiro, 3, 30) 
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(ODS) Each mathematical object depends on the structure to which 

it belongs.”134 

 

One of the motivations for this position can be found in the challenge135 that Benacerraf 

famously raised against set-theoretic Platonism.  I will reconstruct what we hold to be the 

essential aspect of this argument as:  

 

[6.0] We can define the natural number line in an infinite number of ways,  

[6.1] The Zermelo Ordinals are defined 0 = , 1 = {0}, 2 = {1}, 3 = {2} and so on, 

such that 1  3 

[6.2] The Von Neumann Ordinals are defined as 0 = , 1 = {0}, 2 = {0, 1},   

3 = {0, 1, 2} and so on, such that 1  3 

[6.3] The set-theoretic Platonist believes that the natural number line is a set, 

such that 1 is a set, 2 is a set and so on, 

[6.4] The set-theoretic Platonist accounts for mathematical truth by saying that a 

mathematical statement names a set, 

[6.5] In [6.1] the number one is not ‘in’ the number three; in [6.2] the number 

one is ‘in’ the number three, thus the relevant criterion of individuation, 

(PII), does not hold.136 

[6.6] We have no reason to prefer [6.1] over [6.2] or vice-versa.  How then can 

the set-theoretic realist say which of these formulations the natural number 

line is? 

 

Benacerraf thus concludes that “numbers are not objects, against realism in ontology.”137 

 

ARS enables us to answer this question, thereby preserving a realist position.  In the 

above case, each defined natural number system is a particular instance of an abstract 

natural-number structure.138  That is to say, the two natural number systems above are 

isomorphic to each other and demonstrate the existence of a single abstract structure that 

they exemplify; that it is wrong to range (PII) over the individual numbers because there 

are no natural numbers as particular objects - that is, as existing things whose ‘essence’ or 

‘nature’ can be individuated independently of the role they play in a structured system of 

a given kind.139  Thus, our notion of identity ought to apply to the structural content of 

the two systems and confirms that they are identical because each ‘number’ in one system 

lines up in one-to-one correspondence with a ‘number’ in the second – that the relevant 

criterion for identity is isomorphism140 – essentially that there exists a one-to-one 

“structure preserving”141 map between two structures that preserves relations and objects 

held of those relations.  As one can see, this distinction changes the talk of mathematics 

as the study of abstract objects, to mathematics as the study of abstract structures.  It is 

                                                 
134 (Linnebo [2], 67) 
135 (Shapiro, 5) 
136 (Brading and Landry [2], 572) 
137 (Shapiro, 5) 
138 (Shapiro, 5-6) 
139 (Brading and Landry [2], 572) 
140 (Shapiro, 93) 
141 (Shapiro, 91) 
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important to note that objects are retained under this ontology; however, these objects are 

defined by their associated relations within a structure and are ontologically dependent on 

structures for their existence142 and the inner content or intrinsic properties of objects 

within a structure cannot be analyzed (it is mostly accepted wisdom that numbers, for 

example, do not have any sort of inner content or intrinsic properties).  It is understood 

that there is usually a background ontology selected (which is understood to be 

structurally irreducible) or fixed to a particular structure theory143 which Shapiro 

maintains is a deciding factor for adopting ante rem structuralism over categorical in re 

structuralism.144   

 

ARS differs from the alternative mathematical structuralisms in the sense that under ARS 

a structure is an independent abstract universal which stands apart from the systems 

which may exemplify it.  Ante rem means that “universals exist prior to and independent 

of any items that may instantiate them.  Even if there were no red objects, the Forms of 

Redness would still exist.”145  The primary opposing alternative “is that universals are 

ontologically dependent on their instances.  There is no more to redness than what all red 

things have in common.”146  For Shapiro, any view of universals which denies the free-

standing independent ante rem view, he dubs in re universalism.  Thus, in re 

structuralism (IRS) admits only structures of systems whereas the ante rem view admits 

that systems exemplify abstract free standing structures which exist regardless of whether 

or not a system exemplifies them.147 

 

Shapiro calls a system “a collection of objects with certain relations”148 between these 

objects giving the examples of “An extended family is a system of people with blood and 

marital relationships”149 and baseball as “a collection of people with on-field spatial and 

‘defensive-role’ relations.”150  He defines a structure as “the abstract form of a system, 

highlighting the interrelationships among the objects, and ignoring any features of them 

that do not affect how they relate to other objects in the system.”151  It is the task of ARS 

to develop a structure theory to formally model their respective positions152 - a theory 

“strong enough to encompass [the behavior] of all structures.”153  A structure theory is a 

collection of axioms, or statements, which describe how structures behave.  Shapiro 

outlines an axiom highly relevant to our discussion, the Coherence Axiom: “A structure is 

characterized if the axioms are coherent”154 -  If P is a coherent sentence in a second-

order language, then there is a structure that satisfies (entails or “makes true”) P.155   

                                                 
142 (Shapiro, 82) 
143 (Shapiro, 82, 86) 
144 (Shapiro, 87) 
145 (Shapiro, 84) 
146 (Ibid.) 
147 (Shapiro, 101) 
148 (Shapiro, 73) 
149 (Ibid.) 
150 (Shapiro, 74) 
151 (Ibid.) 
152 (Shapiro, 90) 
153 (Maddy [2], 173-4) 
154 (Shapiro, 133) 
155 (Shapiro, 95) 
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I will present one powerful arguments that have been raised against Shapiro’s view: 

 

[ante rem access problem] How does the mathematician come to know 

structures which we do not already have systems 

for?156 

 

This seems to me to be a compelling argument that Shapiro must account for if he is 

going to offer ARS as a viable philosophy of mathematics.  As I have noted Shapiro’s 

ante rem structuralism requires at least three kinds of abstract entities: objects, systems 

and structures themselves.  Psillos concludes that this renders ARS as unmotivating and, 

thus-far, incompatible with OR: 

 

“One important difference between ante rem and in re structuralism 

concerns the role of objects in structures. Since in re structuralism focuses 

on relational systems, it takes the objects of a structure to be whatever 

objects systems with this structure have. According to in re structuralism, 

there are no extra objects that ‘fill’ the structure. It’s then obvious that 

the objects that ‘fill’ the in re structures have more properties than those 

determined by their interrelationships in the structure. They are given, 

and acquire their identity, independently of the abstract structure they 

might be taken to exemplify. 
 

By hypostatizing structures, ante rem structuralism introduces more 

objects: those that ‘fill’ the abstract structure. Of these ‘new’ objects 

nothing is asserted than the properties they have in virtue of being places 

(or roles) in a structure. These places cannot be identified with the objects 

of any or all of the in re structures that are isomorphic to the abstract 

pattern. This is what Shapiro calls the “places-are-objects” perspective. 

The ‘fillers’ of the abstract (ante rem) structure are places, or positions, in 

the structure; yet if one considers the structure in and of itself, they are 

genuine objects. After all, they must be such since the abstract structure 

instantiates itself (cf. Shapiro 1997, 89). Given that an instantiated abstract 

structure needs objects to be instantiated into, the places of the abstract 

structure must be objects. Mathematical structuralism, then, does not view 

structures without objects. It’s not revisionary of the underlying ontology 

of objects with properties and relations.”157 

 

It should be noted that while the characterization of IRS suggests nominalism, the 

traditional set-theoretic Platonist would probably fall under the IRS label as well (with 

the addition of an ontological commitment to sets).  For the purposes of this paper I will 

consider those who embrace IRS as being those who advance an eliminative programme.  

I turn again to Linnebo for clarification, this time regarding the different eliminative 

positions:  “The eliminative versions deny that there are abstract mathematical structures 

                                                 
156 see (Linnebo [1], 103-4) 
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and that the nature of mathematical objects is exhausted by their being positions in such 

structures. We can distinguish between three versions of eliminative structuralism.  

 

Deductivist structuralism avoids both ontological commitment to mathematical 

objects and all use of modal vocabulary. It interprets mathematics as the 

formulation of various (mostly categorical) theories to describe various kinds of 

concrete structures, and as the study of what holds in all models of each of these 

theories.  

 

Modal structuralism lifts the deductivists' ban on modal notions. It interprets 

mathematics as asserting that it is possible for various theories to have concrete 

models, and as studying what necessarily holds in all such models.  

 

Finally, set-theoretic structuralism rejects the deductivists' nominalism in favor of 

a background theory of sets. It then takes mathematics to be the study of various 

structures realized among the sets. This is often what mathematicians have in 

mind when they talk about structuralism.”158 

 

From the deductivist direction, IRS supporters have argued for the adoption of category 

theory as the foundational language of mathematics – to replace set theory.  This view is 

controversial for a number of reasons: 

 

[6.7] Category theory may ‘secretly’ employ/be reliant on set theory.159 

[6.8] It isn’t clear whether Category Theory eliminates talk of abstract entities. 

[6.9] It has been argued that for a theory to be foundational, it must make positive 

ontological commitments (which would naturally be incompatible with IRS). 

 

IRS supporters have counter-asserted that category theory serves as a framework or 

universal language, as opposed to being a foundation for mathematics, which organizes 

what we aim to say about mathematical and logical structures.  In this second sense, 

category theory is almost diametrically opposed to ARS and its ontological commitments. 

 

It has been suggested, following Landry, that “we may now distinguish between both 

ontological realism and idealism – the claim that mathematical objects (and perhaps, 

structures as well) exist, as either ontologically given or psychologically constructed 

“things”, independently of their linguistic expression – from semantic realism – the claim 

that mathematical propositions, which talk about mathematical objects qua positions in 

structured systems and structured systems themselves, meaningfully and objectively refer 

when interpreted from within a linguistically presented system.”160 

 

Category theory has been affectionately dubbed “general abstract nonsense.”  This is 

fitting, given the extreme level of abstraction employed.  Category theory is an almost 

entirely different way of doing mathematics (over say ZFC set theory).  Essentially, a 
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category is a graph with a collection of nodes with arrows between those nodes, 

satisfying a number of conditions: 

 

[1] A category ‘C’ can be described as a set ‘Ob’, whose members are the objects of 

‘C’161, satisfying the following conditions: 

   

[Morphism]  For every pair ‘X, Y’ of objects, there is a set ‘Hom(X, Y)’, called 

the morphisms from ‘X’ to ‘Y’ in ‘C’.  If ‘’ is a morphism from 

‘X’ to ‘Y’, we write ‘: X  Y’. 

 

[Identity] For every object ‘X’, there exists a morphism ‘idX’ in Hom(X, X) 

called the identity on ‘X’. We write ‘idX : X  X’. 

 

[Composition] For every triple ‘X’, ‘Y’, ‘Z’ of objects, there exists a partial binary 

operation from ‘Hom(X, Y)  Hom(Y, Z)’ to ‘Hom(X, Z)’, called 

the composition of morphism in ‘C’.  If ‘: X  Y’ and ‘g : Y  

Z’, the composition of ‘’ and ‘g’ is noted ‘(g) : X  Z’. 

  

[2] [Morphism], [Identity] and [Composition] satisfy two axioms: 

 

[Associativity] If ‘: X  Y’, ‘g : Y  Z’ and ‘h : Z  W’, then  

‘h(g) = (hg)’. 

 

 [Identity] If ‘: X  Y’, then ‘(idY) = ’ and ‘(idX) = ’.162 

 

Immediately one can see just how radically different category theory is over the 

traditional ZFC.  One interesting thought is how the development of category theory 

might impact work in (traditionally set-theoretic) model theory.  But that is subject for a 

future discussion.  Having fleshed out the two primary structuralist positions, I will note 

that the question over ‘the proper foundations for mathematics’ remains firmly unsettled.  

However, from the pragmatic considerations that ZFC set theory is, at the present time: 

(i) the accepted background framework for the overwhelming majority of 

mathematicians, (ii) that ZFC set theory presupposes the existence of an infinite universe 

of (both well-behaving and misbehaving) sets/classes and (iii) noting the out standing 

problems surrounding the advancement of category theory – I am lead to tacitly support 

the Platonist-leaning ante rem option. 

 

7. Assessing the MUH 

 

As I have demonstrated above, the various positions composing structuralism in both the 

philosophy of science and mathematics remain undecided and also in their embryonic 

stages of development.  However, recent work toward an account of scientific theories, 

hinging on the semantic view, seems plausible.  And, it would appear that if such an 

                                                 
161 We make note here that Category Theory can actually be formulated without talk of objects. 
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approach can succeed, then OR has a strong chance of succeeding as well via the still-

compelling no-miracles argument.  In the philosophy of mathematics, a Platonist position 

still seems the best-bet for mathematical realism.  However, it is unclear as to whether or 

not we can effectively link the Platonist-leaning ARS option to OR.  This consideration 

alone casts doubt on the plausibility of the MUH, at least as it has been presented here.  

And, when we take problems with the isomorphic theory of representation into account, it 

would seem to follow that Tegmark’s MUH is unmotivating. 

 

However, the option still remains that Tegmark need not commit to ARS in order to 

secure a Platonist-leaning mathematical structuralism.  It is this basic notion that inspires 

the remainder of this paper.   

 

8. A Metaphysics from Physics 

 

The metaphysician has traditionally organized their ontology according to some sort of 

ontological category scheme (i.e. what kinds of entities, or groups of entities, that there 

are).  Now while many entities have been rejected, added, reconceived or revised; there 

are two entities that usually find their way into ontological discussions and that have 

remained relatively stable throughout philosophical inquiry: objects and properties. 

 

OR is primarily concerned with the former, as made clear above.  However, consideration 

surrounding properties and just how properties are entertained with, or related to, objects 

is of interest as well.  A bundle theory is the ontological claim that an object consists only 

of a collection (bundle) of properties.  This contrasts directly with a substance approach 

which sees objects (and their substances) as distinctly separate from the properties which 

may describe them - the subsisting object may be understood in a primitive quiddity or 

haecceity sense (which would then be taken as separate or distinct from its properties). 

 

There are two primary ‘property theories’ at the present: on the one hand we have the 

age-old theory of properties as universals (i.e. realism) on the other hand “Realism has a 

strong rival: trope ontology, according to which properties are particulars which may 

resemble each other.”163  A trope ontology allows us to construct classes of particular 

properties that resemble each other in such a way as to make sense of general names (like 

say ‘red’).  Traditionally, a universal-based ontology might see properties as instantiated 

in a substance such that “As instantiations they are particular – a universal is not 

instantiated twice at one instant in one substance. Yet because any one universal may be 

instantiated in two (or more) different substances any one that is will be ‘wholly present’ 

in two (or more) different regions of space or space-time; this appears to be 

incoherent.”164 

 

Many commentators have suggested that tropes and bundles seem very friendly to each 

other165; for when we combine bundle theory with realism significant problems seem to 

arise when we take (PII) into consideration as seen above. Now there is much debate over 
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these different metaphysical concepts and just how we are to understand them.  Sadly, 

due to space constraints, I will not tread further into those considerations here.  What is of 

present concern, is recent work aiming to link these ideas to QFT.   

 

OR is significantly motivated by recent work in Quantum Field Theory (QFT) as “our 

best quantum theories are field theories” 166.  As we might expect there are many 

different, competing, interpretations of QFT.  I will simplify these many views into the 

dichotomy of those that advocate a particle interpretation and those that do not.  A rough 

definition offered by Redhead gives us a starting point from which to work: “A field 

theory in physics is a theory which associates certain properties with every point of space 

and time.”167  

 

To flesh this idea out a little more concretely: “As it is usually described, a field consists 

of values of physical quantities associated with spacetime locations or spatiotemporal 

relations.”168  Alternatively, “[a field is] a domain or region on which a function is 

defined: a field is a field of values of this function.”169  And, “A field is extended over all 

of space.  There may be more than one field…  A field can have different intensities (or 

“strengths”) in different regions.”170  Thus, for example, “electromagnetic field theory 

associates electric and magnetic forces with space-time points.”171   

 

Now many commentators have either advocated a particle interpretation, or at least for 

the plausibility of a particle interpretation, of QFT.  In a classical particle theory an 

individual is usually understood in a “naïve ‘substance’ approach.”172  “An individual is 

an entity which is the ‘bearer’ of properties – if you strip away all the properties you are 

left with a substratum indicated by a proper name that picks out that individual as itself at 

one particular time and reidentifies it ‘transcendentally’ as the same individual at other 

times in its history”173 perhaps invoking the notions of quiddity or haecceity: “A particle 

theory in physics is a theory which attributes to certain individuals (the particles) a 

variety of properties.”174  “This definition makes it look as though space-time points are 

the primary individuals of the theory.  The fields are then properties of these spatio-

temporal individuals.”175  So it can be seen that particle theories make use of the 

substance approach.   

 

On the other hand von Wachter argues: “As it is well known the concept of a permanently 

existent particle is not consistent with this theory [of relativity]. But rather it is the point 

event in space-time that is the basic concept. In principle all structures have to be 

understood as forms in a generalised field which is a function of all the space-time points. 
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In this sort of theory a particle has to be treated either as a singularity in the field, or as a 

stable pulse of finite extent. The field from each centre decreases with the distance, but it 

never goes to zero. Therefore ultimately the fields of all the particles will merge to form a 

single structure that is an unbroken whole. (Bohm & Hiley 1993, The Undivided 

Universe, p. 352)”176 

 

He continues: “It is not true, I have argued, that the material world is the totality of single 

things, substances, with a definite size each of which is somewhere in space and between 

which there is nothing. I have suggested that we better describe the world ontologically 

not as the totality of things or particles but rather as consisting of fields which are 

extended over all of space. A priori we may be inclined to think that the world consists of 

permanently existent particles, but we should be sceptical about this.”177 

 

This has lead some argue directly for “a novel field trope-bundle (FTB) ontology on 

which fields are composed of bundles of particularized property instances, called 

tropes”178 whereby (i) particles are rejected or abandoned along with (ii) a substance 

ontology.  We see how this might work given that “Field ontology does justice to the fact 

that there is the same structure everywhere by claiming that the world consists of fields 

which are extended over all of space, and it does justice to the fact that the world is 

different in different regions by claiming that fields have different intensities in different 

regions”179 – that a field is in fact a sort of sui generis entity; and if each particle is a 

unique value in an ‘unbroken whole’ of values; and if multiple fields are overlaid over 

each other (and perhaps interact with each other) we can see how fields might play the 

role of properties, field values might play the role of tropes and spacetime events might 

play the role of bundles.  If this is the case, and there is still much dissent and controversy 

over this, then we are perhaps lead down the path to reject a substance, and hence a 

particle, approach as an interpretation of QFT, and perhaps in metaphysics as well. 

 

I will note here that this project is not as clearly evident as either side would like to think.  

Schneider has suggested: “A field approach to ontology has a sort of ‘holistic character’ 

and, thus, is alien to the usual ontological/conceptual parsings of the universe of 

discourse by means of (philosophical) categories and notions such as ‘universal’ and 

‘particular’, ‘substance’ and ‘accident’, ‘exemplification’, ‘instantiation’, and the like. In 

light of the success of mathematical field theory within our best scientific theories, and 

because discontinuities between those theories and ontology should be minimized, it 

appears worthwhile to tackle the formidable ontological and meta-ontological task of 

rethinking the paradigms of and intuitions about ontological categories and kindred 

concepts that have, traditionally, guided ontological inquiry.”180  She continues: “Field 

spaces are neither universals nor particulars, in the senses put forward here. Field spaces 

are more than a collection of particulars. They are entities sui generis, internally complex, 

that capture general as well as particular aspects. The particular aspects are captured by a 

                                                 
176 (Wachter, 26) 
177 (Ibid.) 
178 (Wayne, 2) 
179 (Wachter, 26) 
180 (Schneider, 26) 
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field space’s concretizations, and the general ones by the coordinating and holistic role 

the field space plays.”181 

 

What seems clear to me however, is that the ways by which philosophers have 

traditionally distinguished between entities are fast becoming obsolete.  For example, the 

traditional substance ontology which forms the underlying basis for standard 

metaphysical or ontological physicalism is, in my opinion, archaic and in need of 

substantial revision regardless of whether or not FTB succeeds.  The success of FTB just 

lends additional credibility to our replacement or rejection of substance metaphysics and 

physicalism. 

 

Having outlined one strand in contemporary metaphysics that opposes the traditional 

substance ontology (and presumably substance, or ontological, physicalism as well), I 

will now open a more sustained attack on physicalism with the MUH fresh in mind.   

 

It is pertinent at this time to return to some of the issues surrounding OR.  As we have 

seen, OR denies the traditional category of object-hood and accepts structures alone into 

its ontology (under its strongest variant).  ARS also dispenses with individually 

subsisting mathematical objects in favor of structures (though it retains abstract objects).  

ARS advances the pertinent thesis that a mathematical structure is an abstract entity 

existing outside of space-time.  For OR it is not clear whether or not a physical structure 

is itself abstract: 

 

“Let’s grant that physical structure exists – what is it? Is it just a 

description of the properties of entities? This leads to epistemic SR again. 

What makes these properties physical and not mathematical? That they’re 

the properties of an entity? Again, we come back to the same old question 

– what is that (individual or non-individual)? If the entity is 

dissolved/reconceived then all we have is the structure and at this level the 

distinction between the mathematical and the physical may become 

blurred…”182 

 

Some opponents of OR have challenged that this ambiguity arises from the structuralist 

metaphysics itself - “we have to distinguish clearly between a mathematical structure and 

a physical structure”183 - on the grounds that in failing to establish a distinction they 

argue, OR dissolves or collapses the distinction between the physical and the 

mathematical, committing us to Platonism.184  This is exacerbated by the recent interest 

in mathematical structuralism and the idea of ante rem structures.  French and Ladyman 

make clear their stance: “we are not mathematical Platonists with regards to structures”185 

– they seem inclined to the in re variety. 

 

                                                 
181 (Schneider, 25) 
182 (French and Ladyman [1], 45) 
183 (Cao, 58) 
184 (Cao, 57) 
185 (French and Ladyman [2], 75) 
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In a more speculative moment, Shapiro considers the extension of ARS abstract 

mathematical structures to the ordinary and physical world: he stipulates that ordinary 

objects and ordinary structures are not freestanding structures in the way that formal 

mathematical structures are.186  He explains: “beyond mathematics, there is more to 

reference and satisfaction than is captured in model theory.  For ordinary language, 

model theory must be supplemented with accounts of reference and satisfaction.”187  So, 

on his account it seems that there will remain a distinction between mathematical and 

perhaps physical or even ordinary structure.  French and Ladyman offer a trivial 

distinction between the physical and the mathematical: that there are more structures of 

the latter than of the former.188  And, as we have seen in section six it isn’t clear that ARS 

and OR can be linked together in a coherent or acceptable way. 

 

Are these distinctions ‘strong’ enough to deny the accusation of Platonism?  I suggest 

that until things are spelled out a little more concretely (pun not intended) that the 

structuralist’s justification for these assertions is not immediately evident – it may be 

possible to develop a more nuanced Platonist-leaning mathematical structuralism that is 

compatible with OR (say an IRS motivated Platonism).  Thus, I will reconstruct what we 

understand to be one of the essential arguments asserted by Cao, who has been a vocal 

opponent of OR189:  

 

[8.0] The scientific realist understands the scientific activity to be discovering, 

exploring and describing a physical world.190 

[8.1] This physical world is something over and above the mathematical models, 

entities, or theories which describe it.  This requires the scientific realist must 

commit to entities that are separate from, and which they take to interpret, the 

(mathematical) models which describe them.191 

[8.2] Ontic structuralism suggests that the world is just (mathematico-) structural which 

requires that (i) structures to be real and subsisting (mathematical) entities and (ii) 

that our theories are literally isomorphic to the world. 

                                                 
186 (Shapiro, 260) 
187 (Ibid.) 
188 (French and Ladyman [2], 75) 
189 as we understand it, Cao “himself appears to incline towards the epistemic form. Now Cao tells us that 

he is neither, that he sees his position as a ‘third way’ of some sort.” (French and Ladyman [2], 76) – what I 

will refer to as the traditional scientific realist view (the arguments Cao presents, I feel, are the arguments 

that a traditional scientific realist would argue as well).  We should note that he mentions “Both the ontic 

and epistemic versions of SR are philosophically unsatisfactory also because both of them smack of 

phenomenalism and instrumentalism” (Cao, 69) and “We realists don’t have to suffer from such a defeat”  

(Cao, 76).; French and Ladyman describe Cao’s ‘third way’ as that “which attempts to unite a form of 

‘entity realism’ with Worrall’s (epistemic) structural realism.” (French and Ladyman [2], 76)   
190 “What actually happens in the development of science is not, as French and Ladyman assert, the 

dissolution of physical entities into mathematical structures” (Cao, 66) 
191 from: “on their attempt to dissolve physical entities into mathematical structures… it carries them away 

from scientific realism and towards Platonic idealism” (Cao, 57) 
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[8.3] Scientific practice suggests that a (mathematical) theory or model is interpreted 

by the physical, which is seen as being something more fundamental, or prior, 

than the (mathematical) theory or model.192 

[8.4] [8.2] contradicts [8.0], [8.1] and [8.3]. 

[*] Thus, ontic structural realism cannot be offered as a realist program in the 

philosophy of science. 193 

 

What is relevant to me here is that Cao seems to either (i) identify scientific realism with 

physicalism (that they would entail each other)194 or (ii) suggests that if one commits to 

scientific realism one must necessarily commit to physicalism (that one entails the other).   

My justification for this, is that the kind of ‘physical entities’ that are required to justify 

this (reconstructed) argument seem at least to require a commitment to some sort of 

traditional physicliasm.  Now despite one’s various commitments, I believe that these 

underlying assumptions are subject to deep criticism.  I will argue that scientific realism 

and physicalism, in its most popular incarnation, in fact do not support each other.  

Further, there is the outstanding problem of just how we are to conceive of structures as 

entities.  Following the metaphysical revision proposed by the ontic structuralists, surely 

structures are to be understood differently than objects, and the impact of these 

considerations might be worth further investigation. 

 

Let B and A be structures.  In what sense are we to take these structures to be different in 

kind? to be distinct? to be identical?   

 

[8.5] We can distinguish between kinds of structure by noting the set-theoretic 

predicates that hold for the various entities under inquiry.   

[8.6] In the common parlance, we can identify distinct structures up-to-isomorphism.  If 

two structures are not isomorphic, then they are not the same structure. 

[8.7] If two structures are isomorphic, then for all intents and purposes, they are the 

same structure.   

 

In this way we can distinguish between kinds of structure: monotonic, rings, groups, 

commutative algebras; and between two structures: A and B are distinct iff (A  B). 

 

I will argue here, that unlike with objects there is no way to distinguish between two 

structures’ substances because there are no substances which attach to a structure.  It, 

therefore, makes no sense to argue for a distinction to be drawn between two structures 

that are said to be isomorphic, for there is no extra non-structural substance, as per [8.7] 

                                                 
192 “The major trouble is that by removing underlying physical entities from consideration, they also take 

an important task away from physicists and philosophers of physics, the task of interpreting mathematical 

structures in terms of physical entities. This move has the effect of preventing us from penetrating into the 

deeper layers of the physical world, and thus is counter-productive and even detrimental to the 

development of physics.”  (Cao, 77) 
193 We derive this from the following passages, and the above:  “In blending physical structures with 

mathematical ones, which paves the way for dissolving the former into the latter and for finally eliminating 

the former from the discourse…” (Cao, 58) and “[unlike] the ontic version: entities are not assumed to be 

dissolved into mathematical structures” my brackets; (Cao, 68) 
194 he certainly identifies with some variant of scientific realism:  “We realists…” ; (Cao, 76) 
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above.  If one suggests that there is some non-structural component to the entities in the 

world, then their view collapses into ESR.  So the proponent of OR appears obligated, in 

consideration of a variant of Platonism, to defend a non-isomorphic account of 

representation in order to save a distinction between the mathematical and the physical.  

However, I raise the observation that any weaker morphism is still a relationship between 

mathematical structures.  If the proponent of OR were to take it that ‘physical structure’ 

is something over and beyond mathematical structure, in what sense do we say that the 

physical is structural then?  For then the weight of the no-miracles argument, which 

under OR takes effect at the level of the mathematical edifice itself, would lead OR to the 

same criticisms raised against ESR.195 

 

These, I feel, are important considerations when we look to the secondary aim of this 

paper.  While, of course, the questions surrounding OR and ARS remain unsettled – I feel 

that it is pertinent to investigate this question given the presence of the Pythagorean 

heuristic identified in section one.  So I ask this question: assuming OR and some 

Platonist inspired mathematical structuralism, in what way can we meaningfully, and 

non-trivially, draw a distinction between mathematical and physical structures?   

 

To answer this question, and in order to more thoroughly lay out my criticism of 

physicalism, I will explore what I feel are Cao’s implicit assumptions regarding Scientific 

Realism, Naturalism and Physicalism. 

 

9. Scientific Realism, Naturalism and Physicalism 

 

I take realism, in general, to be (i) the position that those objects which are in the ‘domain 

of discourse of x’ are in fact ontologically significant and that these objects exist 

independently of the human mind and (ii) that statements made about those objects which 

are in the ‘domain of discourse of x’ either hold true or false of those objects thereby 

establishing a truth value account for x.196  A second way to consider this is that a realist 

holds that the subject matter in question has a real ontological status and/or that 

ontological statements about the subject matter in question are not vacuous or fictitious.  

This is usually taken to mean that this subject matter is somehow “independent of 

anyone's beliefs, linguistic practices, conceptual schemes, and so on.”197   

 

Thus, I take scientific realism to be that position which claims, hinging on the apparent 

power of the no-miracles argument, that (i) science is really discovering subsisting 

entities that exist in the objective world and (ii) that the predictive power and success of 

scientific theories (their approximate truth) are due to their latching onto these objective 

entities. 

 

The compelling suggestion has been made by a number of commentators that many 

philosophers conflate scientific realism with physicalism, and also naturalism with 

                                                 
195 recall the criticism’s levied against Russell’s distinction between first and second order structure 
196 I argue that ‘objects’ track, or pick-out, real patterns and hence, can meet the ontological conditions for 

realism outlined here; see (Ladyman and Ross, 220-34) 
197 (Miller) 
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scientific realism (and thus the three are taken to be somewhat interchangeable or 

equivalent).  I argue that, following the pessimestic meta-induction it cannot be the case 

that scientific realism just equates to physicalism (consider the demise of physicalism’s 

predecessor: materialism), nor that scientific realism just means naturalism.   I offer a 

treatment of this notion: 

 

[9.0] I define a metaphysical position ‘m’ to be compatible with naturalism if and only 

if ‘m’ is motivated by (or derived from/compatible with) a contemporary (best) 

scientific theory.    

[9.1] A contemporary scientific theory is a best scientific theory at some time t. 

[9.2] A best scientific theory is a scientific theory enshrined into scientific practice and 

institutions as the premier way to explain, predict or describe the behavior of 

observed phenomena in a particular area of scientific investigation (e.g. 

psychology, physics, microeconomics). 

 

My justification for this rests on the grounds that I take naturalism to mean that we 

should be motivated to constrain our philosophical activities, at least those that wish to 

make the claim toward objective truth, by science; and that science through a process of 

continual revision and theory change continues to reject certain theories or to produce 

better ones.  Thus, any metaphysical position that fails to derive from a current best 

scientific theory likewise fails to be a metaphysical position motivated, or compatible 

with, naturalism. 

 

Now, I will characterize physicalism as being any particular metaphysical position which 

satisfies (holds) these assumptions: 

 

[9.3] The world is comprised of levels. 

[9.4] There is a fundamental level. 

[9.5] This fundamental level is a collection of irreducible atoms. 

[9.6] These atoms interact locally (micro-banging). 

[9.7] These atoms are objects (i.e. individuals) which are understood to be something to 

which properties attach to (bare particulars) and/or which display a primitive 

essence, haecceity, quiddity or substance. 

[9.8] These objects are physical. 

 

I now argue that physicalism, so conceived, fails to be motivated by a best scientific 

theory and is thus not compatible with naturalism.  By the definition outlined for 

naturalism above, I set the necessary and sufficient conditions for a metaphysical position 

to be compatible with naturalism.  I argue that this requires that the metaphysical position 

in question be in correspondence with a current best theory of some scientific domain.  

Note that physicalism is motivated to provide a realist metaphysics or ontology for 

natural metaphysics, presumably derived from physics itself. 

 

I need only turn to Quantum Mechanics to explicitly falsify condition [9.6] through 

quantum entanglement.  Furthermore, [9.3] is reliant on [9.4] and [9.5] neither of which 
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are necessarily true or given by empirical observation.198  From our considerations in 

section five I am inclined to doubt [9.8], if not to reject it all-together.  Thus, 

 

[9.9] Physicalism is motivated from Classical Mechanics and Physics. 

[9.10] Classical Mechanics and Physics are subsumed by Quantum Mechanics and Field 

Theory.199 

 

Following these premises and conclusion it follows that physicalism stands in opposition 

with naturalism.  Embarrassingly, many physicalist metaphysics do not make any 

reference to contemporary physics.200   

 

10. Towards Pythagoreanism 

 

Following my rejection of physicalism (and with the introduction of the metaphysical 

notion of ‘physical structure’), I am then saddled with the burden of providing an 

explanation of just what ‘physicality’ amounts to.  I will admit that I opt for something 

similar to the Physical Theory Account of Physical Objects following Markosian’s 

classification: 

 

“One natural response to the question What are physical objects? is simply that 

physical objects are the objects studied by physics.  I will call this the Physical 

Theory Account of Physical Objects.  One main problem with the Physical 

Theory Account is that it seems likely to lead to circularity, since it’s natural to 

want to define physics as the study of physical objects and the laws of nature 

governing them… In addition to this main problem facing the Physical Theory 

Account, there are several other objections that can be raised against that account. 

Here’s one. Various abstract objects, like numbers, equations, and functions, not 

to mention other more obscure mathematical entities, are studied by physics. So 

the Physical Theory Account seems to entail that these objects should count as 

physical objects. But they shouldn’t.”201   
 

I do agree that to say ‘physics is the study of physical objects and laws’ and then to hold 

the position that ‘physical objects are the objects studied by physics’ is indeed circular.  

Replacing ‘objects’ with ‘entities’ gains no traction either. 

 

Before attempting to provide an answer for this I will note that there have been some 

objections raised against giving priority to certain scientific activities202 and thus against 

taking the heavy formalization endemic in certain scientific fields to be indicative of say 

the Pythagorean heuristic.  To defend my view then, I must attempt at least to defend the 

primacy of physics.  I am motivated to this position by the following: 

 

                                                 
198 (Ladyman and Ross, 20, 55-7) 
199 (Ladyman and Ross, 25) 
200 (Ladyman and Ross, 10, 18) 
201 (Markosian, 379) 
202 see again (Cartwright) 
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“The first argument is inductive: in the history of science a succession of 

specific hypotheses to the effect that irreducibly non-physical entities and 

processes fix the chances of physical outcomes have failed.” 

 

“The second argument is also inductive.  Over the history of science a 

succession of processes in living systems, and in the parts of some living 

systems dedicated to cognition, have come to be largely or entirely 

understood in physical terms, by which we mean in terms of the same 

quantities and laws as are invoked in physical theorizing about non-living 

systems.”203 

 

Leading to the view that: “Special science hypotheses that conflict with 

fundamental physics, or such consensus as there is in fundamental physics, should 

be rejected for that reason alone.  Fundamental physical hypotheses are not 

symmetrically hostage to the conclusions of the special sciences.”204  

 

The criticisms that have been levied against the primacy of physics often reference 

problems with either supervience or reductive physicalism.  As I have argued in section 

ten, such notions ought to be dispensed with –  that pseudo-scientific talk about levels205   

is merely an anachronistic artifact dating back to the 16th and 17th centuries.  Hence, the 

formalization endemic in physics is a consideration that I feel cannot be ignored. 

 

However, I want to criticize Markosian’s implicit commitment to the Principle of 

Exclusion (he provides no other account for why “they shouldn’t”) which I take to be 

the traditional handle for talking about (and dividing reality between) the mathematical 

and the physical. 

 

When one couples the idea that many working scientists are guided by the attempt 

to discover ‘natural laws’ (which rings of Platonism in that these laws are 

somehow taken to be prior to, or shaping of, the physical world) and recent 

theories of everything which are explicitly pythagorean in nature206 we can find it 

appears that the traditional divisions between physical/abstract or 

physical/mathematical have already been narrowed.207  

 

I remind the scientific realist of the Quine-Putnam Indispensability Argument: 

“(P1) We ought to have ontological commitment to all and only the 

entities that are indispensable to our best scientific theories.  

(P2) Mathematical entities are indispensable to our best scientific theories. 

                                                 
203 (Ladyman and Ross, 43) 
204 (Ladyman and Ross, 44) 
205 see (Ladyman and Ross, 20-1, 53-7)  
206 consider Stoica “The world is defined as a mathematical structure containing the spacetime, which in 

general is a topological space, and the physical laws, expressed as a sheaf over the spacetime.” (Stoica, 2); 

see also (Lisi) 
207 see (Resnik) 
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(C) We ought to have ontological commitment to mathematical 

entities.”208 

Taking contemporary scientific practice (particularly in the more formal sciences: 

physics, computational sciences, economics) into account, we argue that the Quine-

Putnam Indispensability Argument gains greater weight.  This is doubly improved by the 

ascendancy of the semantic view of scientific theories.209 

 

Following the definition of realism offered above, I define mathematical realism to be the 

thesis that mathematical objects are real and exist independently of the human mind and 

that mathematical statements are about those objects and are therefore true or false in 

virtue of those objects.210  Mathematical Platonism is presumably the current reigning 

mathematical realism.  Mathematical Platonism usually makes three claims:211 

 

[10.0] Mathematical objects (mathematicalia) exist.   

[10.0] x(Mx)212 

[10.1] All mathematicalia are abstracta (all mathematical objects are abstract). 

[10.1] x(Mx → Ax) 

[10.2] Mathematicalia are independent of the physical world and its intelligent agents. 

[10.2] x(Mx ↔ Px) 

 

I take [10.1] to be an uncontroversial thesis.213  [10.0] is usually defended by appealing to 

semantic accounts of truth and reference – i.e. the traditional arguments levied against 

psychologism (raised perhaps most famously by Frege).  As noted in section seven, 

mathematical practice also suggests, at least superficially, existence claims which are 

then used in foundational axiomatic systems which produce statements that are 

understood to be true.    

 

Before turning to [10.2], a more thorough defense of [10.0] ought to be offered.  A 

common strategy employed by mathematical realists in order to defend the respectability 

of [10.0] under a naturalist metaphysics was to appeal to the Quine-Putnam 

Indispensability Argument.  Recently, Harty Field, who has nominalist leanings, has 

attempted to outflank the Quine-Putnam Indispensability Argument by demonstrating 

that numbers are in fact dispensable to scientific activity. 214  For Field, numbers are 

primarily fictitious entities which are, in theory, replaceable by concrete physical or 

ordinary objects whose status we have fewer dubious reasons to take as ontologically 

significant.  These efforts have been, of course, met with great criticism.  I do not have 

time to go into the specifics of this proposal here but I will note that while Field’s attempt 

                                                 
208 (Colyvan) 
209 (Brading and Landry [1], 5) 
210 more technically this might be considered realism in ontology and truth value, respectively 
211 working from the definitions set forth in (Linnebo [3]) 
212 I use these first-order sentences just for convenience, presumably we are ranging over all entities/objects 

with our quantifiers. 
213 the early Maddy is a noted exception, see (Maddy[1]) 
214 see (Field) 
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has been much celebrated by antirealists, most observers do not seem to think that his 

project has succeeded in its goal of dispensing with numbers in science.   

 

A recent defense of [10.0] has been offered by Tennant.  I will sketch out a small portion 

of his methodical defense here.  First, Tennant introduces Hume’s Principle which has 

been defended by Hale and Wright,215 and which was “regarded most famously by 

Frege,”216 as being analytic.  Tennant denotes this as Schema (N): 

 

“The number of Fs is identical to the number of Gs if and only if there are 

exactly as many Fs as Gs.”217 

 

For Tennant Schema (N) ought then to be replaced by Schema (C): “the number of Fs is n 

if and only if there are exactly n Fs.”218  (C) avoids many of the difficulties facing 

Hume’s Principle: “Arguably, (C) is a philosophically deeper condition than the Humean 

identity (N), at least for finite numbers; since for these (C) implies (N). Significant also is 

the fact that (C) is completely expressed (albeit schematically) at first order:  

 

#xFx = n if and only if there are exactly n Fs  

 

once granted that the variable-binding term-forming operator #xx is a first order 

expression.  By contrast, (N) involves second order quantification on at least one side, 

insofar as it deals with the equinumerosity of concepts F and G.”219 

 

Following Tennant we are then lead, with additional insights, to the conclusions that: 

 

“In any world in which one uses a rich enough first-order language with 

the identity predicate, the existential quantifier, negation and the 

numerical term-forming operator #one has (on reflection) to 

acknowledge the existence of zero. For in any such world there are no 

things that are not self-identical; whence 0 is the number of such things; 

whence 0 exists.”220 

 

“The question being considered is whether 0, qua number, exists. Our 

answer is that it does. 0 is a very special number; it is the number of any 

empty concept-in particular, the number of things that are not self-

identical. Expressed more formally, 0 is #x(x = x).”221 
 

“The conception of analyticity at work here is one that is shorn of the 

usual dogma that an analytic statement can involve no ontological 

                                                 
215 (Tennant, 311) 
216 (ibid.) 
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commitments. It is analytically true that 0 = #x(x = x), and this in turn 

implies that 0 exists.”222
 

 

Leading us to the necessary existence of the natural numbers: 
 

“To grasp the meaning of "0" is to know what number it denotes, not 

merely to know that it would denote such-and-such a number provided 

only that that number existed. This line of argument, followed through, 

leads one also to the necessary existence of the natural numbers, at least if 

necessity is construed as truth in every possible world about which 

predicative and quantificational thought is possible, or within which such 

thought is possible about it.  For, once such thought is possible, so is its 

extension (if it is not yet extensive enough) to thought about 

numbers…The necessary possibility of doing so guarantees the necessary 

existence of the natural numbers.”223 

 

I shall now return to address [10.2] above.  Clearly [10.2] divides the physicalist and 

Platonism camps – not only in the metaphysical sense of forming the basis for the 

metaphor found in ‘a mathematical reality separate or prior to the physical world’ but 

also in the sense that nominalists tend to champion the physicalist side opposed to the 

Platonists.  I add further that the epistemological arguments against the existence of 

mathematicalia, and indeed the motivation for most antirealist (in mathematics) claims, at 

least on my view, seem to stem from [10.2]. 

 

It is my belief that this division can be dissolved into an even more fundamental set of 

distinctions.  Let these more fundamental distinctions be called the ‘Abstract/Concrete 

Distinction’ which I will identify by the moniker ‘the Principle of Exclusion’: 

 

[10.3] No abstract thing is concrete.  No concrete thing is abstract. 

[10.3] x(Ax ↔ Cx) 

[10.4] There is nothing that is both concrete and abstract. 

[10.4] x(Ax  Cx) 

[10.5] All physical things (physicalia) are concrete. 

[10.5] x(Px → Cx) 

 

Adding to these the uncontroversial thesis that: 

 

[10.6] Every entity is either abstract, concrete or both (when coupled with the Principle 

of Exclusion we derive the standard dichotomy). 

[10.6] x(Ax  Cx) 

 

So upon investigating [10.2] it would seem that [10.2] is partly the consequence of those 

premises which comprise the Principle of Exclusion [10.3], [10.4] and [10.5] above]: 

For instance we see immediately how [10.2] follows from: 
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[10.0] x(Ax ↔ Cx) 

[10.1] x(Mx → Ax) 

[10.5] x(Px → Cx)  

 

I take it that to justify [10.2], at least axioms [10.0], [10.1] and [10.5] would have to be 

taken – i.e. that [10.2] is a maintainable position given the Principle of Exclusion.  

However, without these axioms I see no reason to adopt [10.2] particularly in the light of 

the considerations raised in sections three and one. 

 

We also see that without the axioms which constitute the Principle of Exclusion, [10.2] 

loses its analyticity.  So to knock out [10.2], it is necessary only to knock out [10.2] and 

not the other axioms [10.0] and [10.1] of mathematical Platonism.  I think that it is 

sufficient to note that the Principle of Exclusion is not something known a priori (just 

note the disagreement between Plato and Pythagoras), nor does it seem to be a necessary 

truth.  So, like Pythagoras, I would like to see a metaphysics that enables a continuity 

between the abstract and the concrete.224  This has been suggested by numerous others, as 

well: “The change Heisenberg proposes suggests that there is more continuity between 

the ontology of mathematics, the ontology of physics, and the ontology of the objects of 

our everyday experience than many philosophers have believed there to be…”225 

 

I argue that, following these considerations, we should reject the Principle of Exclusion. 

Thus, I propose that characterizing the physical as being opposed to the abstract is 

unmotivated, as is the third premise of (mathematical) Platonism.  In order to provide a 

better account for just what physicality amounts to, I feel it prudent to take into 

consideration at least two interesting notions: on the one hand scientists routinely 

employ, or develop new mathematical systems for employment from pre-existing, 

mathematical systems (and, perhaps, abstract entities) in order to describe the physical; 

on the other hand mathematicians may often work from observed phenomena in the 

world to develop a new mathematical system or to extend previously existing ones.226   

 

And, tentatively, I feel that the notion of modeling measurements and/or data plays a 

critical role in linking mathematical models to the world.  To answer Markosian, I will 

suggest here that what qualifies a particular structure as ‘being physical’ is that it is (i) a 

mathematical structure that (ii) accurately models a set of measurement data, and (iii) is 

our current best and simplest way to do so.   

 

Once we have dispensed with the ‘exclusive’ set of binary distinctions between the 

abstract/concrete and between the mathematical/physical it follows that a number of other 

                                                 
224 Consider also the problems that surround the traditional characterization of the concrete: the traditional 

way to separate entities into either the ‘piles’ concrete or abstract is by appealing to spatio-temporal 

locateability (i.e. that entity’s location in spacetime).  Couple this with the traditional assumption [10.5] and 

we run into the absurd problem of not being able to see spacetime itself as physical!   
225 (Hale, 383) 
226 Consider the introduction of matrices by Heisenberg, Born and Jordan which played a vital role in the 

establishment of quantum mechanics. 
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metaphysical assumptions ought to be revised.  For brevity’s sake I will merely provide a 

graphical representation of the new metaphysical view I am inclined to accept. 

 
 

Figure 3. A graphical representation of something like the view proposed in this 

paper and a representation along the lines of the more traditional set of 

distinctions. 
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